JIMMY REV16.2 U2/¢0/

AhkkdkhkkhkrhkhkhhkhhkkhkhxhhkhhkhkkkhkXhRhkhhkkhkrhdhhhhkhkkhhhkhhkkhkkhkhkhhkhkhhkhhhkkhktrkkkkkkhkkhdhkkk
I KEKERE K KT EI AR R KK ERAR KRR KR AKKKA R KIRKRRAKRERIRERKEE KR KRR AR L RRR R XA KL KRR R RRRRRRRRR LK
**
* %
* %
* % J
* %

J
J
* % J
d
d
J

=

=
-
-

22
BRI

*%

* %k J

* % J

o Jd I
* %

* &k

k&

* % RRRR EEEEE
* % R R E

* % R R E

*% RRRR EEEE
*k R R E

* ok R R E

* % R R EEEEE
Y

"kw

| kK

TR a kR hh ke dd ARk kA I A AIIAIIAI AR AN KA KA IR AR AR KA I AR I KRR R RAAAAR KRR RRRAARNKKRIIRE R A *
Ahkkkkkkdkh hh ARk KA AR Kk kkkhkd kk kA hh Ak A AR Kb AR A AR AR PR AR AR AR A AT AR AR AR kAR rkhhh ko k Ak k& ok

2IEFIRIE=E
23

FER=BIFNE2=E

INBRE=EZZR

< < <<
-

< L L <<
<<

T NSNIEY RNV QUEEY Y
i
o
O~
o
™

—— e T e —— e et ———— e T T ™ B el — .

DATE: NOVEMBER 21, 1978

SUBJECT: PMA, _REV._16.2

1_SCOPE

THIS DOCUMENT DESCRIBES THE CHANGES MADE TO PMA AT SOFTWARE REVISION

16.2. 1T SUPPLEMENTS ALL PREVIOUS PMA-RELATED DOCUMENTS RELEASED FROM
ENGINEERING.

2 ERROR _HANDLING

WHEN THE ASSEMBLER ENCOUNTERS AN ERROR, A MORE PRECISE AND INFORMATIVE
ERROR DIAGNOSTIC IS PRINTED FOLLOWING THE OFFENDING LINE. FOR EXAMPLE:

(0001) REL
000000: 000000 (0002) DATA O
§ ¥ (0003) SEG

ERROR V21: SEG/SEGR PSEUDO-OP SPECIFIED AFTER CODE HAS BEEN GENERATED

006001 (3004) END

TEXT SIZE: 000001 WORDS

ERRORS IN:

0003 (v21)

0001 ERRORS (PMA-REV 16.3)

THE ERROR MESSAGE TEXT RESIDES IN SYSOVL>PMAERR. IF THE FILE IS
MISSING OR INACCESSIBLE, AN ABBREVIATED DIAGNOSTIC IS ISSUED, OMITTING
THE EXPLANATORY TEXT. (E.G., IN THE ABOVE EXAMPLE, "ERROR V21" wOULD

BE PRINTED.)

S_NEW_OPCODES

THE NEW OPCODES FOR THE PRIME 550 (STPM, LIOT, PTLB) HAVE BEEN ADDED.

PAGE 1

m——— T T e e e e o v e S RS T T T T T e S T T e e e T e e

DATE: SEPTEMBER 7, 1978

SUBJECT: REV. 16 = FTN

THIS MEMO DESCRIBES THE CHANGES AND ENHANCEMENTS TO FTN FOR REV 16.

1. ENHANCEMENTS

A. FTRN GENERATES FLX AND ODFLX INSTRUCTIONS FOR CERTAIN CLASSES AT

ARRAY EXPRESSIONS, REPLACING PREVICUS, MORE VERBOSE OBJECT CODE.

B. COMPILE SPEED IS INCREASED SIGNIFICANTLY DUE TO THE USE OF 1/0

ROUTINES WHICH TAKE ADVANTAGE OF THE PHYSICAL I/0 STRUCTURE UNDER
PRIMOS. THIS SPEED INCREASE IS MORE DRAMATIC IN COMPILATIONS WHICH
GENERATE LISTING FILES, AND IN COMPILATIOINS ACROSS A NETWORK.

C. A NEW OPTION, -~ PBECR (B REGISTER BIT 2) InNSTRUCTS FTN TO LOAD
ECE'S INTO THE PROCEDURE FRAME IN 64V MODE PROGRAMS, THUS ALLOWING

ECB'S TO0 BE SHARED. THIS FEATURE IS LIMITED TO SUBROUTINES: MAIN
PROGRAMS ARE NOT ABLE 7O TAKE ADVANTAGE OF THIS OPTION.

D. THE FOLLOWING LIBRARY RQUTINES ARE CALLED USING THE SHORT (CALL
(JSXB) SEGUENCE:

SIN DSIN
cos DCOS
ATAN DATAN
SORT DSCRT
EXP DEXP
ALOG DLOG
ALOG1O DLOG1O
DLOGZ2

THIS FEATURE GARNERS EXECUTION SPEED INCREASES FOR PROGRAMS USING THESE
SCIENTIFIC FUNCTIONS.

2. FIXES

THE FOLLOWING BUG FIXES, DIVIDED INTO THOSE REQUESTED VIA TAR'S, AND

THOSE WHICH WERE MANIFESTED IN A LESS OFFICIAL HMANNER, HAVE BEEN
INTRODUCED INTO FTN FOR REV 16.

A. NO - TAR FIXES

1. GENERALIZED SUBSCRIPTS IN ARRAY EXPRESSIONS ARE ACCEPTED TO THE

LEFT OF THE EQUALS SIGN IN ASSIGNMENT STATEMENTS. HOWEVER, DIVISION TO
THE LEFT OF AN EQUALS SIGN STILL CAUSES A SYNTAX ERROR.

2. THE INCORRECT MATCHING OF EXPRESSIONS FOR PROGRAMS COMPILED IN 64R
MODE HAS BEEN FIXED.

PAGE 2

3.
LOOP.

CERTAIN

INCORRECT ARITHWMETIC EXPRESSIONS CAUSED THE COMPILER TO

THIS HAS BEEN CORRECTED,

B. TARED FIXES

THESE ARE LISTED BY NUMBER:

150651 - SEQUENCE NUMBERS

15057 = MULTIPLE INDIRECTS

80276 - BAD CODE FOR COMPARISON IN 64R MODE

15229 - INT*4 OF FUNCTION PROBLEMS IN 64R MODE

80550 - TOO MANY STATEMENT FUNCTIONS ' T

80443

= SINSERTX

WITH NO BLANK

e e e

—— e — B o T o SNV U

SUBJECT: REV. 16 LOADER CHANGES

1. EDB

4 TIMES FASTER.

INPUT SPECIFICATION IS REQUIRED - I.E., EDB NO LONGER DEFAULTS TO THE
PAPER TYPE READER.

(PTR) AND (ASR) WILL NO LONGER BE RECOGNIZED. FOR CONSISTENCY WITH
COMMAND LINE SYNTAX, -PRT AND —ASR SHOULD BE USED INSTEAD.

2. SEG

THE INTERNAL TABLES WHICH ARE COPIED INTO SEGMENT O OF THE SEG RUN FILE
HAVE BEEN CHANGED IN ORDER TO EXPAND THE SYMBOL TABLE AREA. THEREFORE,
ALL COMMAND FILES SHOULD BE RUN TO INSURE THAT THERE ARE CONFLICTS.

FOR EXAMPLE, R-MODE INTERLUDE COMMANDS IN CMDNCO CAN NOT HANDLE THE NEW
FORMAT UNTIL THEY HAVE BEEN REBUILT. OLD FORMAT SEG6 RUN FILES WILL BE
CONVERTED TO THE NEW FORMAT AUTOMATICALLY 8Y SEG. BUFCTL NOW CONSISTS

OF (SEGS*2+2 WORDS): COMMON/BUFCTL/REVFLG,BUFCNT,BUFCTL(SEGS*2). A
BIT RATHER THAN A WORD IS USED TO INDICATE WHETHER OR NOT A SEGMENT
SURFILE HAS BEEN LOADED INTO. REVFLG WwILL BE PRESENT FROM NOW ON. IT

IS SET TO =1 AS A FLAG THAT TABLE CONVERSION WILL NOT BE NECESSARY.
CURRENTLY, SEGS=256. THERE ARE 32 SUBFILES PER SEGMENT.

SEG CHECK FOR LOAD* OR VLOAD* TYPING ERRORS WHICH USED TO RESULT IN THE
RUN FILE BEING DELETED. COMMON BLOCKS LONGER THAN ONE SEGMENT NO

LONGER HAVE TOC BEGIN AT UND ZERO. MULTIPLE STACK ALLOCATION WILL NO
LONGER RUN. THE MIX OPTION CAN BE USED WITH ARRAYS OVER 64K. THE
R-MODE INTERLUDE PROGRAMS WILL FXIT GRACEFULLY SHOULD CONTROL RETURN TO

RUNIT.

BUGS FIXED

TAR2552&8- UPDATE SYMBOL TABLE SIZE PRIOR TO WRITING OUT SEGMENT O

TARZ25724~ DO NOT ASSIGN STACK SEGMENT

TAR25532- DOUBLE PRECSION ADD SO THAT COMMON BLOCKS LONGER THAN ONE

SEGMENT NO LONGER HAVE TO BEGIN AT WORD U.

TAR25533- MIX OPTION/LONG COMMON BUG FIXED

TAR12731- CHECK FOR LOAD/VLOAD* TYPING ERROR

CMDMAK AND CM.FILE HAVE BEEN FIXED TO CALL EXIT UPON RETURN FROM RUNIT
IN THE R-MODE INTERLUDE PROGRAWM

PAGE

2

DIRECT COMMON REFERENCE CONVERSION HAS

BEEN FIXED.

)

e W e e e —— e

———— e ——

J

W

PAGE :

3. LOAD

SYMBOLS MAY HAVE 8-CHARACTER NAMES.

RR (RESET RANGE) CAN BE USED TO RESET THE SAVE RANGE PRIOR TO
(ENTIRE SAVE) WHEN OVERLAYS ARE BUILT.

EN

LINKING IN COMMON IS NOW ALLOWED WHILE FORWARD
REFERENCES ARE BEING UNSTRUNG.

BUGS FIXED

LOAD ALLOWS LINKING IN COMMON WHEN UNSTRING FORWARD

REFERENCES. LOAD WILL NOW GIVE A CORRECT EOF ERROR
MESSAGE WHEN AN ATTEMPT IS MADE TO LOAD A NULL FILE.

A FIX HAS BEEN MADE TO REMOVE THE CODE,CODE ARGUMENT
SEQUENCE IN PRWF$3% CALLS

LOAD HAS BEEN FIXED SO BITS DIPLAYED IN *UII ARE CORRECT.

SUBJECT =

CHANGES TC SORT LIBRARIES A. VSRTLI (V¥-¥ODE SORT LIBRARY)

CHANGES AT REVS 15.3 AND 16.0

FOR CONSISTENCY WITH THE R—-MODE SORT LIBRARY, CALLS TO THE
SUBROUTINE ASCSRT MAY NOW BE MADE AS CALLS TO THE SUBRGUTINE

ASCSss.

THE V-MODE SORT LIBRARY'S INTERNAL ROUTINE SPACE HAS BEEN
RENAMED SPAC$S TO AVOID NAMING CONFLICTS WITH USERS.

PROPOSED NAMING CONVENTION

1. ADOPTION OF A NAMING CONVENTION SIMILAR TO THAT OF THE
APPLICATION LTBRARY HWQULD BE BENEFICIAL IN AVOIDING THE
POSSIBILITY OF A CONFLICT WITH USER WRITTEN ROUTINES AND SYSTEH
ROUTINES.

2. EXISTING ENTRY POINTS: SUBSRT, ASCS$%, ASCSRT (V-MODE'ONLY),
AND COMMON BLOCK NAMES: EB$1, FEB$2, EBs$3, EBs$4, EBSsS,
WOULD NOT BE CHANGED, BUT ALL OTHER NAMES WOULD END WITH THE
SUFFIX "gS".

3. 1 WOULD APPRECIATE YOUR COMMENTS, PARTICULARLY . CONCERNING ANY

PROBLENS THIS SCHEME MIGHT CAUSE.

SUBJECT : EVENT LOGGING IN PRIMOS III, IV, AND V

ABSTRACT

EVENT LOGGING IN PRIMOS IS A MECHANISM WHEREBY MACHINE CHECKS, DISK
ERRORS, AND CERTAIN OTHER SIGNIFICANT EVENTS ARE RECORDED IN A DISK

FILE CALLED LOGREC. A UTILITY PROGRAM —-=- LOGPRT =-—- IS AVAILABLE TO
FORMAT AND PRINT THE CONTENTS OF LOGREC. THIS DOCUMENT DESCRIBES THE
LOGGING MECHANISM, THE USE Of LOGPRT, AND HOW THE LOGGING MECHANISM MAY

BE MODIFIED TO ADD NEW EVENT TYPES.

\NOTE: WHENEVER A NEW REVISION OF PRIMOS IS INSTALLED, THE

VCORRESPONDING REVISION OF LOGPRT SHOULD BE INSTALLED, SINCE NEW EVENT
\TYPES MAY HAVE BEEN DEFINED THAT AN OLDER LOGPRT DOES NOT UNDERSTAND.

REVISION 3 OF THIS PE-T IS A COMPLETE UPDATE OF REVISION 2; NEW
MATERIAL IS INDICATED WITH REVISION BARS.

THIS REVISION CORRESPONDS TO REVISION 14.2 OF PRIMOS IV AND V.

PAGE 1

file:///NOTE
file:///TYPES

L EVENT LOGGING IN PRIMOS

EVENT LOGGING IN PRIMOS

1 _GENERAL_INFORMATION

e e o e R s St o o S oov e o o -

1.1 _FIRST=LEVEL_EVENT LOGGER == _LOGEV]

INFORMATION ABOUT AN EVENT IS ENTERED INTO AN EVENT BUFFER -= LOGBUF

== FEY LOGEV1 --= AN INTERNAL PRIMOS SUBROUTINE. EACH ENTRY IN THE
RUFFER CONTAINS THE TYPE AND LENGTH OF THE ENTRY AND A NUMBER OF
DATA WORDS PASSED TO LOGFV1 BY THE ROUTINE WISHING TC RECORD THE

EVENT. (THE EXACT FORMAT OF EVENT ENTRIES IS DESCRIBED BELOW.)
WHEN LOGBUF FILLS UP, LOGEV1 DISCARDS SUBSFQUENT ENTRIES AND
INCREMENTS LOGOVF -- A COUNTER OF THE NU®MBER OF EVENTS LOST.

LOGEV1 IS CALLED FROM THE CHECK HANDLERS IN SEG4, DOSSUB, DVDISK,
AND PABORT.

1.2 SECOND-LEVEL LOGGER == LOGEV2

EVERY MINUTE THE SECOND-LEVEL HANDLER, LOGEVZ2, EXAMINES LOGBUF AND,
IF IT IS NON-EMPTY, WRITES 1T TO A DISK FILE NAMED ‘LOGREC' 1IN THE

CURRENT UFD OF WUSER 1 (NORMALLY C®MDNCD) ON THE COMMAND DEVICE.
LOGEV2 WILL NOT DUMP LOGREC UNTIL THE TIME HAS BEEN SET BY THE
SYSTEM OPERATOR. LOGEvVZ2 1S CALLED FROM TWO PLACES IN PRIMOS:

PABORT WHEN THE ONE-MINUTE PROCESS ARORT OCCURS, AND DOSSUB WHEN A
*SHUTDN ALL' COMMAND IS ISSUED.

LOGEYVZ2 DOES NOT ODUMP LOGEBUF IF THE FILE LOGREC DOES NOT EXIST IN
CMDNCO OR IF THE CONFIGURATION COMMAND LOGREC HAS BEEN USED TO SET
THE LOGREC QUOTA TO A NEGATIVE VALUE (SEE BELOW). THIS ALLOWS

OPERATION WITH A WRITE-PROTECTED COMMAND DEVICE. (NOTE: IF THE
COMMAND DEVICE IS WRITE-PROTECTED AND A LOGREC FILE EXISTS IN CMDNCO
AND A 'LOGREC 177777' HAS NOT BEEN ISSUED, A DISK WRITE-PROTECT

ERROR MESSAGE WILL BE PRINTED ON THE SYSTEM CONSOLE EVERY MINUTE.)

THE LOGREC FILE CAN BE CREATED WITH ANY SEQUENCE OF COMMANDS

EQUIVALENT TO:

L 'CMDNCO PASSWORD>LOGREC!

c ?

BEFORE DUMPING LOGBUF, LOGEVZ WRITES AN ENTRY TO LOGREC NOTING THE

CURRENT TIME AND DATE. AFTER LOGBUF IS DUMPED, IF LOGOVF (THE
OVERFLOW COUNTER) IS NON-ZERO, LOGEvZ WRITES AN ENTRY NOTING THE
NUMBER OF LOGBUF OVERFLOWS.

NOTE: WHENEVER POSSIBLE, A WARM START SHOULD BE PERFORMED AFTER A
MACHINE HALT. THIS WILL GIVE LOGEVZ2 A CHANCE TO DUMP LOGBUF, EITHER

AFTER ONE MINUTE OR ON A 'SHUTDN ALL' COMMAND,

PAGE 3

EVENT LOGGING IN PRIMOS

1-3 THE LOGREC _CONFIGURATION_COMMAND

CERTAIN ACTIONS OF LOGEV2 CAN BE CONTROLLED BY THE LOGREC
CONFIGURATION COMMAND. THE FORMAT OF THIS CCMMARD IS:

LOGREC <VAL>

<vVAL>, IF POSITIVE, SPECIFIES THE ~NUMBER OF WORDS IN THE LOGREC
FILE. WHEN LOGREC EXCEEDS <VAL> WORDS, LOGEVZ PRINTS:

EXCEEDING QUOTA ON LOGREC

ON THE SYSTEM CONSOLFE EACH TIME LOGBUF IS WRITTEN TO LOGREC.

SPECIFYING A <VAL> OF 0 WILL INHIBIT THE QUOTA CHECK; NO MESSAGE
WILL EVER BE PRINTED.

SPECIFYING A NEGATIVE <VAL> (E.G., 17¢77¢7) MILL SUPPRESS ALL
ATTEMPTS TO WRITE TO THE LOGREC FILE. THIS WILL AVOID DISK WRITE

FRRORS IF RUNNING ON A WRITE-PROTECTED DISK.

THE DEFAULT VALUE OF <VAL> IS 10000 (4096 DECIMAL). THIS COMMAND IS

Pl PP] B Pt Pl VLR v DR

USED TO SET THE VARIABLE LRQUOT IN FIGCOM.

1.4_LOGPRT == _DUMP_CONTENTS_OF LOGREC

THE THIRD LEVEL OF THE FVENT LOGGING MECHANISK IS LOGPRT =-- A
PROGRAM THAT DUMPS THE CONTENTS OF LOGREC TO A DISK FILE OR A USER
TERMINAL. - THE LOGPRT PROGRAM IS IN THE UFD SYSTEM ON VOLUME 1 OF

THE MASTER DISK. THE COMMAND LINE TO INVOKE LOGPRT IS AS FOLLOWS

([] INDICATES OPTIONAL PARAMETER):

\ R *LOGPRT [<OUTTREENAME>] [<OPT> <OPT> ...]

\ <OUTTREENAME> THE DESTINATION FOR LOGPRT*S QUTPUT. IfF *TTY* IS
\ SPECIFIED, THE OQUTPUT wWILL BE TO THE USER'S TERMINAL. IF
\ <SOUTTREENAME> IS OMITTED, OUTPUT WILL BE TO THE FILE 'LOGLST'
\ IN THE CURRENT UFD. ANY OTHER SPECIFICATION WILL BE TAKEN AS
\ A TREENAME TO WHICH THE OUTPUT WILL BE DIRECTED.

<0PT> AN OPTION KEYWORD, POSSIBLY FOLLOWED BY SUBFIELDS. ALL OPTION

KEYWORDS BEGIN WITH A HYPHEN AND MAY BE ABBREVIATED TO A
UNIQUE LEFT SUBSTRING (WITH THE EXCEPTION OF THE -PURGE
OPTION).

~HELP - A LIST OF LOGPRT OPTIONS IS PRINTED. THE LOGPRT
COMMAND MUST BE RETYPED AFTER THE OPTIONS ARE PRINTED.

-INPUT <TRNAME> = SPECIFY TREENAME OF LOGREC FILE 70 PROCESS.
IF THIS OPTION IS OMITTED, A PROMPT IS ISSUED FOR THE

TREENAME.

PAGE 4

http://CQNEISUBfiIIQM_C.QHI3.ABD

EVENT LOGGING IN PRIMOS

-FROM MMDDYY - ONLY LOGREC ENTRIES FROM THE SPECIFIED DATE TO

THE LATEST ENTRY ARE PROCESSED.

-TYPE T1 T2 ... = PROCESS ENTRIES ONLY OF THE INDICATED TYPES.

THE TYPES (11, T2, ETC) CAN BE ANY OF THE FOLLOWING (ANY
UNIQUE ABBREVIATIONS ARE ACCEPTABLE):

coLd COLD STARTS
WARM WARM STARTS

TIMDAT TIME/DATE ENTRIES

CHECKS MACHINE CHECKS C(INCLUDING MEMORY PARITY)
POWERF POWER FAIL CHECKS
DISK DISK ERROGRS

DSKNAM ADDISK 0OR STARTU ENTRIES
OVERFL LOGREC OVERFLOW ENTRIES
SHUTON OPERATOR SHUTDOWNS

CHK300 P300 MACHINE CHECKS
PAR3C0 P300 MEMORY PARITY CHECKS
MOD300 P300 MISSING MEMORY MODULE CHECKS

TYPF10-TYPE1S ENTRIES FOR TYPES 10-15

NOTE THAT THE TIME/DATE STAMPS ASSOCIATED WITH THE SELECTED

ENTRIES WILL NOT BRE PROCESSED UNLESS TIMDAT IS EXPLICITLY
SELECTED, FOR EXAMPLE, '-T D T' WILL PROCESS ALL DISK
ERRORS AND THEIR ASSOCIATED TIME/DATE STAMPS. IF TIMDAT

ALONE IS SPECIFIED, ALL TIME/DATE STAMPS IN LOGREC WILL BE

PROCESSFD. IF TIMDAT 1S SPECIFIED IN CONJUNCTION WITH ONE
OR MORE OTHER TYPES, ONLY THE TIME/DATES OF THE SELECTED

TYPFS WILL BE PROCESSED. IF THE ~-TYPF OPTION IS NOT
SPECIFIED, ALL ENTRIES WILL BE PROCESSED.

-SPOOL - (PRIMOS III AND IV ONLY) SPOOL THE OUTPUT FILE WHEN
DONE. LOGPRT WILL PRINT THE NAME OF THE OUTPUT SPOOL FILE
AND A LONG/SHORT INDICATION.

-DELETE - DELETE THE QUTPUT FILE WHEN DONE (MAKES SENSE ONLY
WHEN USING THE -SPOOL OPTION).

-PURGE - EMPTY LOGREC WHEN DONF (THIS OPTION CANNOT BE
ABBREVIATED). OWNER RIGHTS ARE REQUIRED ON LOGREC.

~CONTIN - CONTINUE AFTER BAD ENTRY IS FEOQUND. LOGPRT WILL
NORMALLY HALT IF AN INVALID ENTRY IS ENCOUNTERED IN LOGREC.

IF THIS OPTION IS SPECIFIED, LOGPRT WILL CONTINUE
PROCESSING IN AN ATTEMPT TO FIND THE NEXT VALID ENTRY.

-DRUG ~ THIS OPTION CAUSES LOGPRT TO READ ENTRIES FROM THE
TERMINAL AND CAN BE USED FOR TESTING LOGPRT'S FORMATTING
FOR NEW (OR OLD) ENTRY TYPES. EACH ENTRY SHOULD BE ENTERED

AS A SERIES OF TOKENS (USING RDTK$3'S RULES). OCTAL TOKENS
ARE CONVERTED TO BINARY; ALL OTHERS ARE TAKEN AS ASCII
STRINGS AND TRUNCATED TO THE LEFTMOST TWO CHARACTERS.

| A | | S|

LOGPRT LEAVES THIS MODE OF OPERATION WHENEVER A TOKEN

PAGE >

EVENT LCGGING IN PRIMOS

STARTING WITH A HYPHEN IS ENTERED. THE -PBUG OPTION ALSO

- |~

TURNS ON TTY OUTPUT AND THE -CONTIN OPTION.

IF LOGPRT FINDS THAT THE OUTPUT FILE ALREADY EXISTS, IT WILL PRINT

THE MESSAGE:

OK TO DELETE OLD <QUTTREENAME> (Y OR NJ):

THE REPLY SHOULD BE 'Y' TO DELETE THE FILE OR 'N' TO ENTER A NEW
DESTINATION. IF "N' IS ENTERED, THE MESSAGE

NEW SPECIFICATION:

IS PRINTED. ALL PARAMETERS FOLLOWING THE 'R LOGPRT' MAY BE
REENTERED.

FINALLY, IF NO '~-1I' OPTION WAS SPECIFIED, LOGPRT PRINTS THE MESSAGE:

INFUT TREENAME:

THE TREENAME OF THE LOGREC FILE TO BE PRINTED SHOULD BE ENTERED. IF
A NULL LINE IS ENTERED, <O>CMDNCO>LOGREC WILL BE ASSUMED.

2_LOGPRI _PROCESSING

\LOGPRT FIRST OUTPUTS A HEADER LINE CONTAINING THE TREENAME OF THE INPUT
\FILE AND THE CURRENT TIME AND DATE. FOR EXAMPLE:

\
\ kkrkk <O>CMDNCODLOGREC, 09:23:44 TUE 12 DEC 1978 *xxkx

THE HEADER IS FOLLOWED BY FORMATTED ENTRIES, ONE OR MORE LINES PER
ENTRY. THE FOLLOWING ENTRIES ARE CURRENTLY DEFINED. (ALL NUMBERS ARE
VIN OCTAL EXCEPT WHERE NOTED. BRACKETS (LJ) SURROUND INFORMATION THAT

\MAY NOT BE PRESENT FOR ALL CPU MODELS OR REVISIONS OF PRIMOS.)

09:01:20_WED_16_FEE_1977

THIS IS A DATE/TIME ENTRY ENTERED BY LOGEVZ2 WHEN LOGBUF WAS DUMPED

T0 LOGREC. ALL EVENTS FOLLOWING THIS ENTRY AND BEFORE THE NEXT
DATE/TIME ENTRY OCCURRED DURING THE MINUTE JUST PRIOR TO THE TIME
SHOWN.

\COLD START [CPU TYPE= T MICROCODE REV= MM TD= IIIIII ...]

A COLD START OF PRIMOS WAS PERFORMED. IF RUNNING UNDER REV 16.2
(OR LATER) OF PRIMOS, A COLD START ENTRY CONTAINS 8 WORDS OF
INFORMATION OBRTAINED FROM THE STORE PROCESSOR MODEL NUMBER (STMP)

INSTRUCTION (SEE PE-TN=204). ‘CPU TYPE®' INDICATES THE CPU AS
FOLLOWS:

PAGE 6

PP Pl e PP S Pl d P

file:///LOGPRT
file:///FILE

EVENT LOGGING IN PRIMOS

\

\ TYPE___MODEL_NUMBER

\ B] P4 00

\ 1 RESERVED

\ 4 RESERVED

\ 3 P350

\ 4 P4501 (P450, P40OT)

\ S P560 (P550, PS20T)

\ 6 PS0OO0X (P500)

\ 7 RESERVED

\

\ *MM' INDICATES THE REVISION OF MICROCODE RUNNIRNG; FXXXXXX ..t IS
\ THE FULL 8-WORD ID FROM THE STMP INSTRUCTICN.
WARM START

A WARM START OF PRIMOS WAS PERFORMED.

MACHINE CHECK (XXX) DSWSTAT= SSSSSS SSSS5SS DSWRMA= YYYYY RRRRRR RRRRRR

DSWPB= PPPPPP PPPPPP [DWPARITY= XXXXXX XXXXXX ..a 1

-

\ A MACHINE CHECK OCCURRED. DSWSTAT, DSWRMA, DSWPB, AND DSWPARITY
\ CONSTITUTE THE DSW AT THE TIME OF THE CHECK. DSWPARITY IS NOT
\ PRESENT ON ALL CPU MODELS. IF DSWPARITY IS NOT PRESENT, ®*XXX*' IS
\ AN ENCODING OF THE MACHINE CHECK CODE AND INOT RCM PARITY? IN
\ DSWSTATH AS FOLLOWS:

\ BPD PERIPHERAL DATA QUTPUT

\ BPAI PERIPHERAL ADDRESS INPUT

\ B8MD MEMORY DATA OUTPUT

\ RCD CACHE DATA

\ BPAO PERIPHERAL ADDRESS QUTPUT

\ RDXI RDX-BPD INPUT

\ BMA MFMORY ADDRESS

\ RF REGISTER FILE

\ RCH RCM PARITY ERROR (XCS ONLY)

\ IF THE RMA INVALID BIT IS SET (B1T 9 COF DSWSTATL), 'YYYYY' IS
\ VCINV)!', OTHERWISE 'YYYYY' IS ABSENT.

\ IF DSWPARITY IS PRESENT, IT IS BROKEN DOWN BY REPORTING BOARD (A,
\ t, C€s, D) AND SIGNAL NAME AS FOLLOWS. (NOTE: ALL SIGNALS ARE
\ REPORTED IN THE POSITIVE SENSE. FOR EXAMPLE, IF *RCMPE* IS
\ PRINTED, IT MEANS THAT THE SIGNAL 'RCMPE~' WAS (.)

\ DSWPARITYH

\

\ 01 - RPARERR1+ Cs DMX INPUT E6: BPD OR BURST- RO,RZ2

\ ES: BPD OR BURST- RO,R1,R2,R3

\ DMX OUTPUT : BMD

\ 02 - RFARERRZ2%+ CS pMX INPUT Fé: BPD OR BURST- R1,R3

\ ES5: BPD

\ DMX OUTPUT : BMA

PAGE 7

EVENT LOGGIMG IN PRIMOS

MISSING MEMORY DSWSTAT= ...

\ 03 - FBDMX+ (S BURST-MODE DMX TRANSFER

\ 04 - BURST=INPUT+ CS 1=DMX INPUT, 0=DMX QUTPUT

\

\ 065,06,07 = 0 - FPDPE+ D PERIPHERAL REPORTS BPD ERROR (QUTPUT)
\ 1 - FBRFHPE+ D BASE REGISTER FILE HIGH

\ 2 - FMDPE+ D MEMORY REPORTS BMD ERROR (WRITE)

A 3 - FIPRAPE+ D PREFETCH BUFFER ADDRESS

\ 4L = FPAPE+ D PERIPHERAL REPORTS BPA ERROR (OQUTPUT)
\ 5 - FBRFLPE+ D BASE REGISTER FILE LOW

\ 6 - FMAPE+ D MEMORY REPORTS BMA ERROR

\ 7 - FIPRIPE+ D PREFETCH BUFFER INSTRUCTION

\ 08 - RCMPE~- A RCM PARITY IF NO BOARD REPORTED ERROR

\ 09 - FMDECCU+ D MEMORY REPORTS ECC UNCORRECTABLE READ ERROR
\ 10 - GDBDPE- D PREFFTCH BOARD DETECTED ERROR

\ 11 - BPAIPE+ A BPA INPUT ERROR (DMX OR INTERRUPT)

\ 12 - FRDXPE+ A RDX ERROR WHEN MOST RECENTLY CLOSED

\ 13 - FRFPE+ A REGISTER FILE ERROR

\ 14 - FREAPE+ A REAH OR REAL ERROR

\ 15 = FDMX+ D DMX CYCLE AT TIME OF ERROR

\ 16 =

\

\

\ DSWPARITYL

\

\ 01 - GCBDPE~- C C BOARD DETECTED ERROR

\ 02 - FPMDEVPEH+ C BMD INPUT EVEN WD

\ 03 - FBMDODPE+ c BMD INPUT ODD WD

\ 04 - LMMOD+ C MISSING MEMORY MODULE AT CACHE-MISS

\ 05 - LBMAPE+ C MEMORY REPORTS BMA ERROR AT CACHE-MISS

\ 06 - LFERNEXT- c LSB ADDR TC MEMORY AT ERROR (CACHE-MISS)

\ 07 - LFLRMAL15+ C LSB ADDR TO MEMORY AT START OF CACHE-MISS

\ 08 - LMISFLT16+ C INDICATOR OF WHICH MEMORY MODULE WAS ACTIVATE
\ D

\ 09 - LBMDECCU+ C MFMORY REPTS ECC UNCORRECTABLE ON CACHE-MISS
\ 10 - LBMDECCCH C MEMORY REPTS ECC CORRECTABLE ON CACHE-MISS

\ 11 = LRCIAPE+ c CACHE~INDEX ERROR ON CACHE-READ

\ 12 - LRCDODPE+ ¢ CACHE~DATA-0ODD WORD ERROR ON CACHE-READ

\ 13 = LRCDEVPE+ ¢ CACHE-DATA-EVEN WORD ERROR ON CACHE-READ

\ 14 = LFSERVDBD=- PURPOSE OF CACHE CYCLE: 1T=EXECUTE, U=PREFETCH
\ 15 =

\ 16 -

A MISSING MEMORY MODULE CHECK OCCURRED.

MACHINE CHECK EXCEPT THE MACHINE CHECK CODE (XXX) DOES NOT APPEAR

INFORMATION IS AS FOR A

AND DSWPARITY IS NOT DECODED.

MEMORY PARITY (XXXX) DSWSTAT=

«o PPN_,WN= PPPPPP WWWWWW

A MEMORY PARI
(CORRECTED)

TY ERROK
OR 'ECCuU!

OCCURRED. PXXXX ! IS
(UNCORRECTED) . 'PPN,WN=PPPPPP WWWWWW"'

EITHER ‘ECCC®

IDENTIFIES THE PHYSICAL PAGE AND WORD NUMBER OF THE ERROR. FOR AN

PAGE 8

EVENT LOGGING IN PRIMOS

ECCC ERROR, THE PPN IS FOLLOWED BY *BIT=XX', WHERE *XX' IDENTIFIES

THE BIT IN ERROR =- 1-15 FOR BITS 1-15, RP FOR RIGHT PARITY, (2,
C4, C5 FOR OTHER CHECK BITS, ¥B FOR MULTIBIT, NE FOR NO ERROR.
(THIS IS TAKEN FROM THE ECCC SYNDROME FIELD 1IN DSWSTATL.)

\
\

FOLLOWING THE BIT IDENTIFICATION IS 'OP=X', WHERE X IS C OR 1 AND
REFLECTS THE SETTING OF DSWSTATL BIT 6 (OVERALL PARITY).
DSWPARTITY 1S DISPLAYED BUT NOT DECODED.

\VPOWER FAIL CHECK

\

\

DISK

A POWER FATL CHECK OCCURRED.

X¥ ERROR DVNO= DDODDD (TYPECODE) CRA= RRRRRR RRRRRR CYL= CCC HEAD=

HH RECORD= RR RCRA= AAAAAA AAAAAA STATUS (ACCUM)= SSSSSS STATUS
(LAST)= LLLLLL RETRIES= TT MMMMMM

A DISK ERROR OCCURRED DURING AN 'XX' OPERATION, WHERE *'XX*' IS *RD!
FOR READ OR 'WT' FOR WRITE. DVNO GIVES THE DEVICE NUMBER.
'TYPECODE® GIVES THE CONTROLLER NUMBER AND DEVICE TYPE (MHD =>

MOVING HEAD DISK, FHD => FIXED HEAD DISK, SM => STORAGE MODULE).
CRA GIVES THE RECORD ADDRESS, WHICH IS BROKEN UP INTO CYL
(CYLINDER), HEAD, AND RECORD ADDRESS (ALL IN DECIWAL). FOR A READ

OPERATION, RCRA GIVES THE CRA READ ON A CRA ERROR. STATUS (ACCUM)
IS THE OR OF ALL STATUS BITS OBTAINED DURING RETRIES. STATUS

(LAST) IS THE STATUS OF THE LAST OPERATION.

RETRIES GIVES THE NUMBER OF RETRIES ATTEMPTED. IF RETRIES IS LESS
THAN 10, THE OPERATION WAS COMPLETED SUCCESSFULLY -- MMMMMM WILL

BE '(RECOVERED)?', IF RETRIES = 10 AND THE ERROR COULD NOT BE
CORRECTED BY ECC, MMMMMM IS °*(UNCORRECTABLE)'. IF AN ECC ERROR
HAS BEEN SUCCESSFULLY CORRECTED BY THE SOFTWARE, HMMMMMM 1S WORDNO=

AND CORRECTION=, WHICH GIVE THE WORD WUMBER IN THE RECORD AND THE
32-BIT CORRECTION PATTERN USED.

DISK

MOUNT: PACKNAME ON DVNO

AN ADDISK OR STARTU COMMAND WAS ISSUED. THE INDICATED PACKNARME

WAS MOUNTED ON THE DISK IDENTIFIED BY 'DVNOT,

MACHINE CHECK USER= NN PC= PPPPPP

A PRIME 300 MACHINE CHECK OCCURRED. USER GIVES THE USER NUMBER
(DECIMAL), PC GIVES HIS PC AT THE TIME OF THE CHECK.

MEMORY FARITY

A PRIME 300 MEMORY PARITY ERROR OCCURRED (SEE ALSO NEXT ENTRY).

MEMORY PARITY PPN= PPPPPP WN= WWWWWW CONTENTS= CCCCCC

A PRIMF 300 MEMORY PARITY ERROR WAS ENCOUNTERED DURING A WARM
START MEMORY SCAN. GIVEN ARE THE PHYSICAL PAGE NUMBER (PPN), WORD

NUMBER OFFSET IN THE PAGE (WN), AND INCORRECT CONTENTS.

PAGE 9

file:///POWER

EVENT LOGGING IN PRIMOS

MISSING MEMORY

A PRIMF 300 MISSING MEMORY CHECK OCCURRED.

LOGBUF OVERFLOW —- NNNNN ENTRIES LOST

'NNNNN' (DECIMAL) EVENT ENTRIES WERE LOST DUE TO OVERFLOW OF

LOGBUF .

SHUTDOWN BY OPERATOR

THE OPERATOR ISSUED A 'SHUTDN ALL' COMMAND. (THIS AUTOMATICALLY
DUMPS LOGBUF.))

\TYFE= TT DATA= DDDDDD ...
\

\ A LOGREC ENTRY OF TYPE 10-15 WAS ENCOUNTERED. 'TT' INDICATES THE
\ TYPE OF THE ENTRY; 'DDDDDD ...' IS A DISPLAY OF UP TO 9 WORDS OF
\ INFORMATION FROM THE ENTRY.

xk% LOGREC EMPTY ##+

THIS MESSAGE IS PRINTED If LOGPRT FINDS NO ENTRIES IN LOGREC.

x END OF LOGREC =- NNNNN FNTRIES, PPPPP PROCESSED *#*%*

THIS MESSAGE 1S PRINTFD WHEN LOGPRT REACHES THE END OF LOGREC.
'NNNNN' (DECIMAL) GIVES THE NUMBER OF ENTRIES IN LOGREC NOT

INCLUDING DATE/TIME AND LOGBUF OVERFLOW ENTRIES. *PPPPP* GIVES
THE NUMBER OF ENTRIES PROCESSED.

WHEN ALL THE ENTRIES IN LOGREC (OR OTHER INPUT FILE) HAVE BEEN
PROCESSED, LOGPRT WILL NORMALLY CLOSE THE FILE AND EXIT. IF, HOWEVER,
THE -PURGE OPTION HAS BEEN SPECIFIED LOGPRT WILL POSITION TO THE

BEGINNING OF THE FILE BEFORE CLOSING, IN EFFECT EWMPTYING THE FILE.

FINALLY, IF THE SPOOL OPTION IS IN EFFECT, LOGPRT SENDS THE OUTPUT FILE

TO THE SPOOL PROGRAM AND PRINTS THE NAME OF THE RESULTING SPOOL FILE.
IF THE DELETE OPTION IS IN EFFECT, THE OUTPUT FILE IS THEN DELETED.

. ————— ——— — . . Y - D S - . S W e R S e e ——— - —

THE FOLLOWING TELLS HOW T0O MAKE MODIFICATIONS TO THE EVENT LOGGING
MECHANISM. THE RELEVANT MODULFES ARE FOUND AS FOLLOWS: FOR PRIMOS 1V,
LOGEV]T AND LOGBUF ARE IN PRI4OD>KS>SEG4. LOGEVZ2 IS PRI4OO>KS>LOGEVZ.

FOR PRIMOS III, LOGEV1 AND LOGBUF ARE IN PRI3Z0OC0>KS>TMAIN, LOGEVZ IS
PRI3Z00>KS>LOGEVZ2. FOR ROTH PRIMOS III AND IV, LOGPRT IS IN SYSTEM.

PAGE 10

EVENT LOGGING IN PRIMOS

o~ -

o S D - S S o D e S ovm ot o e - i

LOGBUF IS DEFINED 1IN SEG4 (PRIMOS 1Vv) OR TMAIN (PRIMOS 11I). THE
FIRST ENTRY IN THE BUFFER (LABEL LOGBUF) IS A 9-WORD COLD START

ENTRY. THE FOLLOWING BSZ DEFINES THE REMAINING SIZE OF LOGBUF
(CURRENTLY 63). IT CAN BE REDEFINED AS DESIRED.

T0

1)

LOG A NEW EVENT TYPE, THREE ACTIONS ARE NECESSARY:

AN EVENT MESSAGE MUST BE BUILT THAT CONTAINS THE EVENT TYPE,

2)

LENGTH OF THE MESSAGE, AND (OPTIONAL) DATA WORDS.

LOGEVT MUST BE CALLED TO ENTER THE MESAGF INTO LOGRUF.

3

LOGPRT MUST BE MODIFIED TO RECOGNIZE THE NEW EVENT TYPE AND
APPROPRIATELY FORMAT THE DATA ASSOCIATED WITH THE EVENT. (NOTE

THAT LOGEV1T AND LOGEVZ2 DO NOT EXAMINE THE TYPE FIELD.)

S T e o o oo o Sn — S W — — - ——

AN EVENT MESSAGE CONSISTS OF A HEADER WORD FOLLOWED BY UP TO 23

OPTIONAL DATA WORDS. THE HEADER WORD CONSISTS OF THE EVENT TYPE
I BITS 1-8 AND THE TOTAL MESSAGE LENGTH IN BITS 9-16. IN PMA, A
MESSAGE COULD BE DEFIKED BY:

MsSG DATA (5.L5.8)+3,DATAT1 ,DATA2

THIS DEFINES A MESSAGE FOR EVENT TYPE 5, LENGTH OF MESSAGE
(INCLUDING HEADER WORD) IS 3 WORDS.

T - ——— S ——— - W S > S S o S e — W -

CURRENTLY, THE FOLLOWING FVENT TYPES ARE DEFINED.

) = COLD START
1 - WARM START
2 - DATE/TIME STAMP (LOGEVZ2)
3 - CHECKS (MACHINE, MEMORY PARITY, MISSING MEMORY)
4 - DISK ERRORS
S5 - LOGBUF OVERFLOW (LOGEVZ)
6 - SHUTDN ALL
7 = PRIME 300 MACHINE CHECK
& = PRIME 300 MEMORY PARITY
9 - PRIME 300 MISSING MEMORY
16 = DISK MOUNT
17 - POWER FAIL CHECK

IN ADDITICON, EVENT TYPES 10-15 ARE ACCEPTED BY LOGPRT. (SEE

PAGE 11

EVENT LOGGING IN PRIMOS

LISTING OF LOGPRT.)

3.2.3 CALLING LOGEV1 == PRIMOS _III

IN PMA:

CALL LOGEV1
DAC MESSAGE

IN FORTRAN:

CALL LOGFVI1(MESSAGE)

3.2.4 CALLING LOGEVT == PRIMOS IV

IN PMA, CODE INSIDE SEG4:

JSXB LOGEVL (NOTE DIFFERENT NAME)
ipP MESSAGE

IN PMA, CODE OUTSIDE SEG4:

CALL LOGEV1

AP MESSAGE,SL

IN FORTRAN:

CALL LOGEV1(MESSAGE)

CURRENTLY, LOGPRT RECOGNIZES AND FORMATS DATA FOR EVENT

TYPES

0-9, 16, AND 17. TYPFS 10-15 ARE ACCEPTED, BUT RESULT IN A

PRINTOUT OF ONLY

TYPE=<TYPE> DATA=<WORD1> <WORD2> ... <WORDY>

(NOTE THAT ONLY 9 DATA WORDS ARE PRINTED FOR THESE TYPES.)

T0

ADD A NEW TYPE, ADD A LABEL TO THE COMPUTED GOTO FOLLOWING
STATEMENT $400. AT THE NEW LABEL (BETWEEN $1950 AND $2000), CALL

THE STORE ROUTINE TO PERFORM THE REGQUIRED FORMATTING.

THE CALLING SEQUENCE FOR STORE IS AS FOLLOWS:

CALL STORE (TEXT,TXTLEN,ARRAY,NW,DEC)

TEXT A TEXT STRING TO BE PRINTED.

TXTLEN THE LENGTH IN CHARACTERS IN TEXT. IF ZERO, NO TEXT

1S

PAGE

12

EVENT LOGGGING IN PRIMOS

PRINTED.
ARRAY AN ARRAY OF WORDS TO BE TRANSLATED AND ENTERED IN THE
OUTPUT LINE. ENTRY(1) IS THE FIRST DATA WORD OF THE

EVENT MESSAGE. ENTTYP AND ENTLEN CONTAIN THE TYPE AND
LENGTH OF THE ENTRY.

N THE NUMBER OF WORDS IN ARRAY. IF ZERO, NO WORDS ARE
TRANSLATED.
DEC OCTAL/DECIMAL FLAG. IF ZERO, TRANSLATION IS TO OCTAL

WITH NO LEADING ZERO SUPPRESSION. IF NON-ZERO,
TRANSLATION IS T0 DECIMAL WITH LEADING ZEROES

SUPPRESSED.

NCTE THAT THE TOTAL LENGTH OF THE TEXT TO BE STORED

(=TXTLEN+NW*7) SHOULD NOT EXCEED 67 -- THE MAXIMUM LENGTH THAT
CAN BE PRINTED ON A TTY WITH AN INDENT IN EFFECT. (ALL LINES

\ AFTER THE FIRST FOR AN ENTRY ARE INDENTED S SPACES.) IfF THE
\ LENGTH OF TEXT IS TOO LONG, IT WILL BE TRUNCATED.
\ THE BREAK SUBROUTINE (NO ARGURENTS) CAN BE USED 70 START A NEW
\ LINE. INDENTING MUST BE PERFORMED EXPLICITLY AFTER BREAK IS
\ CALLED (BY STARTING THE NEXT TEXT STRING WITH 4 BLANKS).

AFTER FORMATTING THE ENTRY, GOTO 2000, CODE AT THAT LABEL

FINISHES THE FORMATTING AND OBTAINS THE NEXT ENTRY FROM LOGREC.
\ TO REBUILD LOGPRT, RUN THE COMMAND FILE C_LOGPRT IN SYSTEM (OR
\ C_LLOGPRT IF A FULL LISTING IS DESIRED). THIS WILL CREATE A RUN
\ FILE CALLED +*LOGPRT, *] OGPRT CAN THEN BE MOVED TO CMDNCO AND

RENAMED TO LOGPRT.

3-3_CHANGING THE SIZE_OF _LOGREC

\ THE SIZE OF LOGREC (OVER WHICH THE YEXCEEDING...'" MESSAGE IS
\ PRINTED) IS DEFINED BY THE FIGCOM VARIABLE LRQUGT IN SEG14. THE
\ VALUE OF LRQUOT IS SET BY THE CONFIGURATION COMMAND LOGREC (SEE
\ SECTION 1.3).

- AP Y P PR ITYY PX LSRRI TY-¥ Y Py Sy, o e e e e o

THE DEFAULT INPUT NAME == '<O>CMDNCI>LOGREC' == IS IN THE ARRAY
INPNAM., THE SIZE OF INPNAM AND LENGTH OF THE NAME, INNAML, SHOULD

BE SET TO THE NUMBER OF WORDS AND CHARACTERS IN INPNAM RESPECTIVELY.
THE DEFAULT OUTPUT NAME (LOGLST) IS IN THE ARRAY OUTNAM. ‘

PAGE 13

EVENT LOGGING IN PRIMOS

TABLE _OF _CONTENTS

—— - —— - - - -

1 GENERAL INFORMATION..c‘..-.c.-.o-.-.o-----lﬁ..w.--..-.l.....'......os

1.1 FIRST-LEVEL EVENT LOGGER == LOGEVl...ccenceecceccccanaccccanns .3
1.2 SECOND-LEVEL LOGGER == LOGEVZ..cceeeerecnnconcccccncncecscnnnsnnld
1.3 THE LOGREC CONFIGURATION COMMAND.ceeocceovooeooessaccccansesnsssancnsnh

1.4 LOGPRT =— DUMP CONTENTS OF LOGREC.ccecerecaccacncccccnnanannanceeh

2 LOGPRT PROCESSING....l..-........‘..llI-...;..l.--.....-....-‘..'-.Oé

3 MCDIFYING THE EVENT LOGGING MECHANISMeieeeeeneoaceecsnsnncncsasasaall
3.1 IF‘;CREASING THE SIZE OF LOGBUFI...I-...-........-.....'.........11

3-2 ADDING EVENT TYPES.......-...................--....'...-.---‘..11
3.3 CHANGING THE SIZE OF LOGREC.......'-.”'......’.‘.........."C‘.13
3.4 CHANGING LOGPRT'S DEFAULT INPUT/QUTPUT FILENAMES..eecesceesesealld

PAGE 14

DATE: JANUARY 18, 1979

REV 3
SUBJECT: MIDAS FOR REV 16

ABSTRACT

—— — o, — -

THIS DOCUMENT DESCRIBES A MAJOR PERFORMANCE IMPROVEMENT FOR REV. 16
MIDAS. A DISCUSSION OF SEVERAL ENHANCEMENTS AND BUG FIXES IS ALSO

INCLUDED.

PAGE 2

OVERVIEW

MIDAS APPLICATIONS ON P350, P40O, AND PSOU COMPUTERS WILL OPERATE
SIGNIFICANTLY FASTER AT RFV 16. IN ADDITION, THE PERFORMANCE

IMPROVEMENT REQUIRES NO MODIFICATION OF EITHER USER PROGRAMS OR
EXISTING MIDAS FILES.

THE PERFORMANCE IMPROVEMENT IS DUE TO A CHANGE IN THE WAY INDEX ENTRIES
ARE ADDED TO A MIDAS FILE. AS ENTRIES ARE INSERTED, MIDAS DYNAMICALLY
RESTRUCTURES THE APPROPRIATE INDICIES. PREVIOQUS VERSIONS OF MIDAS

INSERTED NEW INDEX ENTRIES INTO OVERFLOW CHAINS. AS THE CHAINS GREW
LONGER, PERFORMANCE WAS DEGRADED. TO IMPROVE PERFORMANCE, USERS
PERIODICALLY EXECUTED UTILITY PROGRAM REMAKE WHICH ELIMINATED THE

OVERFLOW CHAINS. REV 16 MIDAS HAS FLIMINATED THE USE OF OVERFLOW
CHAINS AND THEREFORE THE NECESSITY TO EXECUTE REMAKE. BECAUSE INDICIES
ARE DYNAMICALLY MODIFIED, INSERTION AND DELETION OPERATIONS OPERATE

FASTER THAN IN PREVIOUS MIDAS RELEASES.

AFTER INSTALLING REV 16, REMAKE MUST RE EXECUTED ONCE TO ELIMINATE ANY

OVFRFLOW CHAINS. THEREAFTER REMAKE MUST NOT BE USED. NOTE THAT REV 16
MIDAS WILL PRINT 'STOP! REMAKE THIS FILE!*' AND ABORT IF ANY OVERFLOW
ENTRIES ARE ENCOUNTERED.

FILES PROCESSED BY REV 16 HMIDAS MAY NOT BE USED WITH REV 15 MIDAS.
HOWEVER, A MNEW UTILITY, *REVERT, WILL CONVERT SUCH A FILE TO A FORNAT

WHICH IS COMPATIBLE WITH REV 15 MIDAS.

IN ADDITION TO GREATFR SPEED, REV 16 MIDAS HAS IMPROVED FILE SPACE

UTILIZATION. EARLIER VERSIONS OF MIDAS SIMPLY 'MARKED' DELETED INDEX
ENTRIES. THE SPACE OCCUPIED BRY THE DELETED ENTRIES WAS NOT REUSABLE
UNTIL THE FILE HAD BEEN RESTRUCTURED BY THE REMAKE UTILITY. MIDAS NOW

DYNAMICALLY RECOVERS AND MAY REUSE THE SPACE OCCUPIED BY DELETED INDEX
ENTRIES.

MIDAS USER_INTERFACE _CHANGES

THE CALLING SEGUENCE OF EXISTING MIDAS FORTRAN USER INTERFACE
SUBROUTINES HAS NOT BEEN CHANGED. HOWEVER, TWO NEW SUBROUTINES HAVE

BEEN ADDED AND A NEW FUNCTION HAS BEEN ADDED TO NEXTS. IN ADDITION,
THE OPERATION OF DELET$S HAS BREEN MODIFIED.

UMODES

THE FIRST SUBROUTINE, UMODES$, ALLOWS AN APPLICATION PROGRAM TO INDICATE
THAT IT WILL BE THE ONLY PROGRAM ACCESSING A PARTICULAR MIDAS FILE.

THE MIDAS FTLE HANDLER NORMALLY ASSUMES THAT A MIDAS FILE MAY BE
ACCESSED BY SEVERAL APPLICATIONS SIMULTANEOUSLY. AS A RESULT, INDEX
AND DATA SEGMENT SURFILES ARE OPENED AND CLOSED WITH EACH CALL 7O

MIDAS. IF ONLY ONE APPLICATION IS TO ACCESS A MIDAS FILE, THEN A CALL
TO UMODES ALLOWS MIDAS TO AVOID UNNECESSARY OPENING AND CLOSING OF

PAGE 3

SEGMENTS. PRELIMINARY STUDIES INDICATE THATY UMODES$ MAY PROVIDE ABOUT A

50% PERFORMANCE IMPROVEMENT. THUS, UMODES MAY BE ESPECIALLY USEFUL FOR
FORTRAN, MQL, COBOL, BASIC, AND RPG BENCHMARKS.

CALLING SEQUENCE:

CALL UMODES(FILE _UNIT,FUNCTION,STATUS)

FILE_UNIT ==> UNIT UPON WHICH THE MIDAS DIRECTORY IS OPEN.

FUNCTION ==> 1 (MM$SUM) INDICATES THAT THE FILE IS TO BE
ACCESSED ONLY BY THE CALLING PROGRAM. MIDAS
WILL THEN LEAVE SEGMENTS OPEN BETWEEN CALLS.

-=> 0 (MM$MUM) INDICATES THAT THE FILE WILL BE
ACCESSED BY POSSIBLY MORE THAN CNE PROGRAM.
MIDAS WILL CLOSE SEGEMENTS BRETWEEN CALLS.

THIS IS THE DEFAULT MODE.

STATUS --> (0 NO ERROR.

-=> TOO MANY FILES. PARAMTER MFILES IN KPARAM
DEFINES THE NUMEER OF FILES WHICH MAY BE
IN SINGLE USERS MODE AT ONE TIME.

—d

-=> 2 ILLEGAL FUNCTICN.
==> 3 ILLEGAL FILE UNIT.

NOTE THAT IT IS THE RESPONSIBILITY OF THE USER TO CONTROL THE NUMBER OF
PROGRAMS ACCESSING A MIDAS FILE. MIDAS HAS NO WAY OF KNOWING HOW MANY
PROGRAMS ARE ACTUALLY USING A MIDAS FILE.

BEFORE AN APPLICATION PROGRAM CLOSES A MIDAS FILE, THE FILE MUST BE
RETURNED TO THE MULTIUSFR MODE VIA A CALL TO UMODES. THIS IS NECESSARY

TO ALLOW MIDAS TO CLOSE SEGMENTS WITHIN THE MIDAS FILE.

EXAMPLE

CALL UMODESC(FILUN,1,STATUS)

C SETS THE FILE OPEN ON FILUN TO SINGLE USER MODE.
C

CALL UMODES(FILUN,O,STATUS)
C INDICATES TO MIDAS TO CLOSE THE SEGMENTS FOR THE
c MIDAS DIRECTORY OPEN ON FILUN. MIDAS WILL
c SUBSEQUENTLY CLOSE SEGMENTS AFTER EACH CALL TO
C MIDAS.
C

CALL UMODES$(0,0,STATUS)
¢ MIDAS WILL CLOSE ALL OF THE SEGMENTS THAT IT HAS
C OPENED. ALL FILES ARE RETURNED TG MULTI-USER MODE.
GDATAS

- e - cae - -

WITH THE SECOND NEW USER INTERFACE SUBROUTINE, USERS CAN
SERIALLY ACCESS DATA RECORDS IN A MIDAS FILE.

CALLING SEQUENCE:

PAGE 4

CALL GDATAS(FILE_UNIT,FUNCTION,BUFFER,SIZE,STATUS)

FILE UNJT --> MIDAS DIRECTORY FILE UNIT.

FUNCTION ==> :200 (FLS$FST) RETRIEVE THE FIRST DATA RECORD.
==> :100 (FL$NXT) RETRIEVE THE NEXT RECORD.

BUF FER -=> USER DATA BUFFER.

SIZE -=> SIZE IN BYTES OF THE BUFFER.

STATUS -=> 0 NO ERROR.

--> >0 SYSTEM ERROR CODE.
-=> -1 ILLEGAL FUNCTION CODE
=-> =2 BAD INDEX DESCRIPTOR. (MIDAS FILE)

==> =3 INVALID RECORD POSITION.

UPON RETURN FROM GDATAS, THE BUFFER CONTAINS THE DATA RECORD. NOTE

THAT CALLS TO GDATAS SHOULD NOT BE MIXED WITH CALLS TO OTHER MIDAS DATA
ACCESS ROUTINES SUCH AS FINDS.

NEXTS FUNCTIONALITY

NEXT$ MAY NCW BE USFD TO RETRIEVE THE RECORD CORRESPONDING TO THE INDEX
ENTRY PRECEDING THE CURRENT ENTRY. THIS FUNCTION IS DETERMINED BY BIT

11 IN THE FLAGS PARAMETER. (FLAGS = :40) A TYPICAL CALL TO NEXT$ WOCULD
USE A FLAGS VALUE OF :140040. THAT 1S, BIT 1 =-=> USE ARRAY, BIT 2 =-->
RETURN ARRAY, BIT 11 --> RETRIEVE PRECEDING RECORD.

\WHEN INSERTING A SECONDARY INDEX ENTRY VIA A CALL TO ADD1$, MIDAS WILL

\NOT MODIFY THE CONTROL ARRAY PARAMETER SUPPLIED BY THE USER EVEN IF THE
\FLERET BIT 1S SET IN THE FLAGS FARAMETER.

DELETS MODIFICATION

- P TR PN T PRI

SINCE DCLET% CAUSES A DELETED INDEX ENTRY TO BE REMOVED FROM THE INDEX,
THE CURRENT POSITION IN THE INDEX 1S MODIFIED BY THE DELETS OPERATION.

IN APPLICATIONS IN WHICH BIT 1 OF THE FLAGS PARAMETER (USE ARRAY BIT)
IS SET, USERS MUST ALSO SET BIT 2 (RETURN ARRAY)> IN ORDER TO MAINTAIN A
VALID POSITION IN THE INDEX. THIS CASE OCCURS FREQUENTLY WHEN USING

DELETS IN CONJUNCTION WITH NEXTS TO DELETE RECORDS WHILE SEQUENTIALLY
TRAVERSING AN INDEX.

file:///WHEN
file:///FLSRET

PAGF 5

S T e e e S v oy g e oy o oy o o

SEVERAL CHANGES HAVE BEEN MADE TO THE MANNER IN WHICH MIDAS HANDLES
FILE UNTTS. INTERNALLY, MIDAS USES FILE UNITS TG ACCESS INDEX AND DATA

SEGMENTS OF A MIDAS FILE., WHEN ASSIGNING FILE UNITS, MIDAS SEARCHES
FROM UNIT 632 DOWNWARD UNTIL AN AVAILABLE UNIT IS FOUND. THIS FILE UNIT
VALUE IS THEN INSERTED INTO TABLE SEG.

PAKAMETER STS1Z L,DEFINED IN FILES LONGPL, LbpPoOOL, AND MIiDPOL,
DETERMINES THE SIZE OF THE TABLE AND THEREFORE THE NUMBER OF FILE UNITS

WHICH MIDAS MAY UTILIZE SIMULTANEOUSLY. IF THE TABLE IS FULL AND
ANOTHER UNIT IS NEEDED, MIDAS CLOSES THE LEAST RECENTLY OPENED FILE
UNIT AND OPENS THE NEW SEGMENT ON THAT FILE UNIT.

o e o o e S D Sn e e v e o o dm - o ———— —

KBUILD -- SEVERAL BUGS HAVE BEEN FIXED. SEE THE SECTION
DESCRIBING T.A.R.'S.

REPAIR == THE REPAIR UTILITY HAS BEEN ELIMINATED.

REMAKE ~- REMAKE MAY ONLY BE USED WITH FILES EARLIER

THAN REV 16. NOTE THAT REMAKE MUST BE USED
ON EACH REV 15 (OR EARLIER) FILE BEFORE THE

FILE MAY RE USED WITH REV 16 MIDAS.

CREATK == SEVERAL BUGS HAVE BEEN FIXED. IN ADDITION,
CREATK NOW OPENS AND CLOSES ONLY THOSE FILE
UNITS THAT IT ACTUALLY NEEDS. AS A RESULT,
CREATK CAN BE RUN FROM A COMINPUT FILE.

*REVERT =- *REVERT IS NEW AT REV 16. THIS UTILITY ALLOWS
USERS TO CONVERT FILES WHICH HAVE BEEN
PROCESSED BY REV 16 MIDAS TO A STRUCTURE
WHICH IS COMPATIBLE WITH EARLIER RELEASES.
*REVERT IS CREATED BY C_RVRT IN UFD MIDAS.
NOTE THAT *REVERT SETS THE FILE REV STAMP TO0 15.0.

T-A.R-*S_PROCESSED

T.A.R. NUMBER PRODUCT

10941 KBUILD. FUILDING FROM A BINARY FILE.

13105 KBUILD. BINARY OPTION.

13128 KBUILD.

20458 KBUILD.

12815 MIDAS LIBRARY. FILE UNIT CONFLICTS

PAGE &

ELIMINATED FOR P400 USERS.

12816 CREATK. USE COF FORTRAN 1/0 WAS NOT
FLIMINATED.
15431 CREATK. KEY TYPE OPTION 'S' WORKS.

'R' IS INVALID.

12636 REMAKE. THE PROBLEM WITH ATTEMPTS TO
REMAKE AN EMPTY INDEX HAS BEEN FLIMINATED.

MODIFICATIONS HAVE BEEN MADE TO ELIMINATE SEVERAL PROBLEMS
WHICH COULD ARISE IN MULTI-USER APPLICATIONS.

A IF A 'DEADLOCK' OCCURS DURING A SECONDARY INDEX SEARCH,
MIDAS WILL NOT DELETE ANY INDEX ENTRIES WHICH POINT

TO DELETED DATA RECORDS.

B IF A 'DEADLOCK' OCCURS DURING A DELETE OPERATION,

MIDAS WILL RESTART DELETS.

C) IF A 'DEADLOCK' OCCURS DURING AN INSERT (ADD13%) OPERATION,

MIDAS WILL NOT RELEASE ITS FILE UNITS. IN ADDITION,
THE SEGMENT CONTAINING THE ROOT INDEX BLOCK IS NEVER
CLOSED UNTIL THE INSERT HAS COMPLETED. NOTE THAT TWO

PROCESSES, DOING INSERTS, CAN NEVER DEADLOCK.

USERS SHOULD BE AWARE THAT IN MULTIUSER APPLICATIONS THE

CURRENT POSITION OF A PROCESS IN A MIDAS FILE MAY BE
MONIFIED BY ANOTHER PROCESS.

\NEW_ERROR_CODE

\WHEN A CALL TO MIDAS REQUESTS THAT THE CONTROL ARRAY PARAMETER BE USED,
\MIDAS NOW CHECKS TO BE CERTAIN THAT THE INDEX ENTRY LOCATED BY MIDAS IS
\ACTUALLY THE ENTRY SPECIFIED BY THE CONTROL ARRAY PARAMETER. TIF THE

\ENTRIES ARE NOT THE SAME, THEN MIDAS RETURNS AN FERROR CODE OF 13.
\"MIDAS ERROR 13" IS ALSO PRINTED AT THE TERMINAL EXCEPT IN BASICV.
\NOTE THAT THIS CHECKING DOES _NOT OCCUR DURING AN INSERTION OPERATION.

\(IE. CALLS 70 ADD1%, COBOL WRITE'S, BASICV ADD'S)

\THE CONTROL ARRAY PARAMETER IS ESSENTIALLY A "CURRENT ENTRY"

\DESCRIPTOR. ERROR 13 MAY OCCUR IF THE "CURRENT INDEX ENTRY'" HAS BEEN
\CHANGED SINCE THE POSITION WAS ESTABLISHED. IN A TWO USER APPLICATION
\FOR EXAMPLE, AN ERROR 13 MAY OCCUR FOR PROCESS A I1F PROCESS B INSERTS

\OR DELETES AN INDEX ENTRY IN THE INDEX BLOCK IN WHICH PROCESS A HAS A
\CURRENT ENTRY.

\ERROR CODE 13 MAY ALSO BE GENERATED BY A SINGLE PROCESS IF THE PROCESS
\INSERTS OR DELETES AN INDEX FNTRY IN THE SAME BLOCK IN WHICH IT HAS A
\CURRENT ENTRY. A PROCESS WHICH ENCOUNTERS AN ERROR 13 MAY ATTEMPT TO

\RE-ESTABLISH THE "CURRENT POSITION" BY DOING A KEYED ACCESS.

file:///NEW_ERRQR_CODE
file:///WHEN
file:///MIDAS
file:///ACTUALLY
file:///ENTRIES
file:///NOTE
file:///DESCRIPTOR
file:///CHANGED
file:///ERROR
file:///CURRENT
file:///RE-ESTABLISH

PAGE 7

—— T AT . S = i e S - -

THE SIZE OF
T0 MODIFY THE

THE INTERNAL BUFFER POOL IS DETERMINED BY TWO PARAMETERS.
DEFAULT SIZE, SET THE PARAMETER CTLASZ TC THE NUMBER OF

INDEX BLOCKS
DEFAULT IS 6.
DEFAULT VALUE

TO BE IN THE BUFFER POOL. THE MINIMUM VALUE IS 2 AND THE
PARAMETER RECLNT DETERMINES THE SIZE GF A BUFFER. THE
Is 1024 WORDS.

INSTALLATION_NOTES

1. MIDAS IS SUPPLIED WITH THE 64V MODE LIBRARY, VKDALB,

INSTALLED

AS A SHARED LIBRARY. COMMAND FILE C_SKLB

BUILDS THE SHARED LIBRARY.

2. EACH MIDAS FILE MUST BE RESTRUCTURED WITH THE MIDAS
UTILITY PROGRAM REMAKE BEFORE THE NEW LIBRARY CAN

BE USED.

SUBJECT: RUNOFF FOR RELEASE 16.0.

TWO NEW COMMANDS ARE AVAILABLE: JEODD (EJECT ODD) AND .EEVEN (EJECT

EVEN), MINIMAL ABBREVIATIONS ARE .EO AND .EE. THESE COMMANDS CAUSE AN
EJECT TO A NEW PAGE. A SUBSEQUENT EJECT IS THEN CAUSED IF THE NUMBER
OF THE NEW PAGE IS EVEN (FOR .EO) OR ODD (FOR .EE). THESE COMMANDS

FUNCTION INDEPENDENTLY OF WHETHER THE PAGE NUMBER HAS BEEN SET WITH THE
.PAGE COMMAND OR IS BEING DISPLAYED.

SUBJECT: AVAIL - REV, 16

THE AVAIL COMMAND, USED TO GENERATE THE CURRENT RECORD AVAILABILITY

STATUS OF STARTED-UP DISKS, HAS BEEN MODIFIED SO AS 70 ACCEPT
VOLUMENAMES UP TO 32 CHARACTERS IN LENGTH. THE COMMAND WILL YET
CONTINUF TO SUPPORT OLD STYLE PARTITIONS AND THEIR & CHARACTER NAMES.

IN ADDITION, THE AVAIL COMMAND WILL NOW ACCEPT AS AN ARGUMENT THE
LOGICAL DEVICE NUMBER, STATED IN DECIMAL DIGIT NOTATION, FOR THE

PARTITION DESIRED. THE FORMAT FOR WHICH, MUST BE ENTERED AS '-LDEV
DD', WHERE DD REPRESETS THE LDEV, CURRENTLY, 18 PARTITIONS ARE
SUPPORTED BY THE SYSTEM. WHEN A LDEV IS GIVEN WHICH DOES NOT SUPPORT A

PARTITION, ONE OF TWO ERROR MESSAGES WILL BE FORTHCOMING,

'DISKRAT NOT FOUND FOR LDEV?

QR
YSYSTEM SUPPORTS LDEV 0:17

SUBJECT: APPLIB (VAPPLB) ~ APPLICATIONS LIBRARY

ATTACHED IS A DETAILED DESCRIPTION OF THE REV.16 APPLICATIONS
LIBARAY (APPLIB) AND ITS V-MODE VERSION (VAPPLB) LOCATED IN UFD = LIB.
FOR FURTHER INFORMATIOMN CONTACT ERIC STANMYER (SUBSYSTEMS).

ALL SUBMISSIONS, COMMENTS, CRITICISMS AND SUGGESTIONS ARE
APPRECIATED.

THE REV.16 APPLICATIONS LIBRARY CONTAINS SEVERAL NEW SECTIONS.
SUBRSECTION 2.4, TITLED "SERVICE ROUTINES®™ HAS BEEN RESTUCTURED INTO THE

FOLLOWING SUBSECTIONS:

STRING MANIPULATION ROUTINES

USER QUERY ROUTINES
SYSTEM INFORMATION ROUTINES
CONVERSION ROUTINES

MATHEMATICAL ROUTINES
PARSING ROUTINES

N NN N NN
’
O 08~ O v

SEVERAL NEW ROUTINES HAVE ALSO BEEN ADDED FOR REV.16, THESE ARE:

FILE SYSTEM:

1. TSCNSA(KEY,UNITS,ENTRY,MAXSIZ,ENTSIZ, MAXLEV,LEV,CODE)

TSCN$A IS A LOGICAL FUNCTION THAT SCANS THE FILE SYSTEM
TREE STRUCTURE (STARTING WITH THE HOME UFD) USING RDEN$$ AND
SGNR$S TO READ UFD AND SEGMENT DIRECTORY ENTRIES INTO THE ENTRY

ARRAY. EACH CALL TO TSCN$SA RETURNS THE NEXT FILE ON THE
CURRENT LEVEL OR THE FIRST FILE ON THE NEXT LOWER LEVEL OF THE
STRUCTURE. THE VARIABLE LEV IS USED TO0 KEEP TRACK OF THE

CURRENT LEVEL. FOR EXAMPLE, AFTER THE FIRST CALL TO TSCN$A
(WITH LEV=0N), LEV WILL FE RETURNED a4S 1, AND ENTRY(1,1) WILL
CONTAIN THE UFD ENTRY DESCRIBING THE FIRST FILE IN THE HOME

UFD. IF THIS FILE IS A SUBUFD, FOLLOWING THE NEXT CALL TO
TSCN$A, LEV WILL BE 2, AND ENTRY(1,2) WILL CONTAIN THE ENTRY
FOR THE FIRST FILE IN THE SUBUFD.

PAGE 2 REV. 2

STRING MANIPULATION:

1.

TYPESACKEY,STRING,LENGTH)

TYPESA IS A LOGICAL FUNCTION THAT WILL TEST A CHARACTER
STRING TO DETERMINE IF IT CAN BE INTERPRETED AS THE TYPE
SPECIFIED BY KEY. A STRING IS NAME IF IT CONTAINS AT LEAST ONE

ALPHABETIC OR SPECIAL CHARACTER (OTHER THAN A LEADING + OR =),
A DECIMAL NUMBER IF IT CONTAINS ONLY THE DIGITS O - 9, AN OCTAL
NUMBER IF IT CONTAINS ONLY THF DIGITS O - 7, AND A HEXADECIMAL

NUMBER IF IT CONTAINS ONLY THE DIGITS O) - 9 AND THE CHARACTERS
A - F (UPPER CASE ONLY). A NUMBER MAY HAVE A LEADING SIGN AND
ANY NUMBER OF BLANKS BETWEEN THE SIGN AND THE FIRST DIGIT,

HOWFVER IMBEDDED BLANKS WITHIN THE NUMBER ITSELF ARE NOT
ALLOWED. A NUMBER MUST ALSO HAVE AT LEAST ONE DIGIT.
LEADING AND TRAILING BLANKS ARE IGNORED. THE FUNCTION IS

TRUE IF STRING SATISFIES THE CONDITIONS REGUIRED BY THE KEY
USED, OTHERWISE IT IS FALSE. A NULL STRING (IE. LENGTH EQUAL
TO ZERO) WILL ONLY RETURN A FUNCTION VALUE OF TRUE IF KEY IS

ASNAME,
TYPESA AVOIDS THE PROBLEM OF DECIMAL OVERFLOW THAT CNVASZA
HAS WHFN IT IS USED TO DETERMINE IF A STRING IS A DECIMAL

NUMBER (CNVASA IS FALSE IF DECIMAL OVERFLOW OCCURS).

MSTRSACA,ALEN,B ,BLEN)

MSTR$A IS AN INTEGER FUNCTION THAT WwILL MOVE THE SOURCE
STRING, A, TO THE DESTINATION STRING, B. IF THE SOURCE STRING

IS LONGER THAN THE DESTINATION STRING IT WILL BE TRUNCATED AND
IF IT IS SHORTER IT WILL BE PADDED WITH BLANKS. THE SOURCE AND
DESTINATION STRINGS MAY OVERLAP. THE FUNCTION VALUE WILL BE

EQUAL TO THE NUMBER O0OF CHARACTERS MOVED (EXCLUDING BLANK
PADDING). IF EITHER STRING IS WULL (IE. LENGTH EQUAL TO ZERO)
NO CHARACTERS ARE MOVED AND THE FUNCTION WILL BE EQUAL TO ZERO.

MSUBSACA,ALEN,AFC,ALC,B,BLEN,BFC,BLC)

MSUBSA IS AN INTEGER FUNCTION THAT WILL MCVE THE SOURCE
SURSTRING CONTAINED IN A TO THE DESTINATION SUBSTRING CONTAINED
IN B. 1F THE SOURCE SUBSTRING IS LONGER THAN THE DESTINATION

SUBSTRING IT WILL BF TRUNCATED AND IF IT IS SHORTER IT WILL BE
PADDED WITH BLANKS. THE SOURCE AND DESTINATION SUBSTRINGS MAY
OVERLAP.

IfF EITHER SUBSTRING IS NULL (IE. LENGTH EQUAL TO ZERO) NO
CHARACTERS ARE MOVED AND THE FUNCTION WILL BE EQUAL TO ZERO,
OTHERWISE IT IS EGUAL TO THE NUMBER OF CHARACTERS MOVED

(EXCLUDING BLANKS USED FOR PADDING).

PAGE 2 REV. 2

CSTRSACA,ALEN,B,BLEN)

CSTR$A IS A LOGICAL FUNCTION THAT WILL COMPARE TWO STRINGS
FOR EQUALITY. THF FUNCTION WILL BE TRUE IF EACH CHARACTER 1IN

STRING A MATCHES THE CORRESPONDING CHARACTER IN STRING B, OR IFf
BOTH STRINGS ARE NULL (IE. LENGTH EQUAL TO ZERO), OTHERWISE
THE FUNCTION WILL BE FALSE. COMPARISION IS ONLY MADE ON THE

NUMBER OF CHARACTERS EQUAL T0O THE OPERATIONAL LENGTH OF EACH
STRING (IE. TRAILING BLANKS ARE IGHNORED).
CSTR$A AVOIDRS THE RESTRICTIONS PLACED O NAMEQS CONCERNING

NUMERIC FIELDS AND TRAILING BLANKS.

CSUBSA(A,ALEN,AFC,ALC,B, BLEN,BFC,BLC)

CSUB$A IS A LOGICAL FUNCTION THAT WILL COMPARE TWO
SURSTRINGS FOR EQUALITY. 1F EACH CHARACTER IN THE A SUBSTRING

MATCHES THE CORRESPONDING CHARACTER IN THE B SUBSTRING, OR BOTH
SUBSTRINGS ARE NULL (IE. LENGTH EQUAL TO ZERO) THE FUNCTION
WILL BE TRUE. IF TWO CORRESPONDING CHARACTERS DO NOT MATCH, OR

IF THE LENGTHS OF THE SUBSTRINGS ARE NOT EQUAL THE FUNCTION
WILL BE FALSE.

LSTR$A(A, ALEN,B,BLEN,FCP,LCP)

LSTR$A IS A LOGICAL FUNCTION THAT WILL SEARCH STRING B FOR

THE FIRST OCCURENCE OF STRING A. IF STRING A IS FOUND THE
FUNCTION WILL BE TRUE AND FCP AND LCP WILL BE EQUAL TO THE
CHARACTER POSITIONS OF THE SUBSTRING IN B THAT MATCHES STRING

A. IF STRING A IS NOT FOUND OR IF EITHER STRING IS NULL (IE.
LENGTH EQUAL TO ZERO) THE FUNCTION WILL BE FALSE AND FCP AND
LCP WILL BE EQUAL TO ZERO.

EACH STRING IS LOGICALLY TRUNCATED TO ITS OPERATIONAL
LFNGTH BEFORE THE SFARCH IS PFRFORMED.

LSURSACA,ALEN ,AFC,ALC,B,BLEN,BFC,BLC,FCP,LCP)

LSURSA IS A LOGICAL FUNCTION THAT WILL SEARCH THE SUBSTRING

CONTAINFD IN B FOR THE FIRST OCCURENCE OF THE SUBSTRING
CONTAINED IN A. IF A MATCH IS FOUND FCP AND LCP WILL BE EQUAL
TO THE CHARACTER POSITIONS IN B OF THE MATCHING SUBSTRING AND

THE FUNCTION WILL BE TRUE. IF A MATCHING SUBSTRING CANNOT BE
FOUND OR IF EITHER SUBSTRING IS NuULL (I1E. LENGTH EQUAL TO
ZERO) THE FUNCTION WILL BE FALSE AND FCP AND LCP WILL BE EGUAL

T0 ZERO.

JSTPSACKEY,STRING,LENGTH)

JSTR$A IS A LOGICAL FUNCTION THAT WILL LEFT OR RIGHT
JUSTIFIY A STRING WITHIN ITSELF. THE FUNCTION WILL BE TRUE 1F

JUSTIFICATION IS SUCCESSFUL, FALSE IF THE STRING LENGTH IS LESS
THAN ZERO OR IF A BAD KEY IS SPECIFIED.

PAGE 4 REV. 2

CONVERSION:

1. CNVESA(NUMKEY,VALUE,NAME, NAMLEN)

CNVB$SA IS AN INTEGER FUNCTION USED TO CONVERT AN INTEGER*4
BINARY NUMBER INTO AN ASCII DIGIT STRING FOR DECIMAL, OCTAL, OR
HEXADECIMAL NUFMBERS. THE RETURNED DIGIT STRING WILL BE RIGHT

JUSTIFIED IN NAME PRECEEDED BY LEADING BLANKS OR ZEROS
(DEPENDING ON KEY). IF VALUE IS NEGATIVE AND TO BE TREATED AS
SIGNED DECINMAL, NAME WILL BEGIN WITH AN INITIAL '-' SIGN. IF

THE NUMBER OF DIGITS CONVERTS SUCCESSFULLY, THE FUNCTION VALUE
IS THE NUMBER OF DIGITS IN NAME, IF NOT THE FUNCTION VALUE IS
ZERO AND NAME WILL BE BLANK.

PARSING:

1. CMDLSA(KEY, KWLIST,KWINDX,OPTBUF, BUFLEN,CPTION,VALUE, KWINFO)

CMDLSA IS A LOGICAL FUNCTION FOR PARSING PRIMOS TYPE
COMMAND LINES (IE. A LINE COMPOSED CF -KEYWORDS OPTIONALLY
FOLLOWED BY A SINGLF ARGUMENT). EACH CALL T0 THE ROUTINE

RETURNS INFORMATION AROUT THE NEXT -KEYWORD (AND ITS ARGUMENT,
IF ONE IS PRESENT) ON THE COMMAND LINE.
THE USER DEFINES AN ARRAY OF -KEYWORDS AND AND DESCRIBES

THE TYPE OF ARGUMENT THAT MAY FOLLOW EACH KEYWORD. AN OPTIONAL
LIST OF DEFAULT KEYWORDS MAY ALSO BE DEFINED. KEYWORD SYNONYMS
ARE ALSO PROVIDED FOR AND ABBREVIATIONS ARE HANDLED USING A

MINIMUM NUMBER OF CHARACTERS TO MATCH SCHEME.
CMDL$A RETURNS THE FOLLOWING INFORMATION FOR EACH -KEYWORD
CARGUMENT] ENTRY IN THE COMMAND LINE:

1) INTEGER THAT IDENTIFIES THE -KEYWORD (KWINDX),
2) TEXT OF THE KEYWORD ARGUMENT (OPTBUF),

3) ARGUMENT TYPE (OPTICN),
4) RFSULTS OF NUMERIC CONVERSION (VALUE),
5) NUMBER OF CHARACTERS IN OPTBUF (KWINFO(1)).

CMDLYA DOES NOT PFRFORM ANY ACTION OTHER THAN RETURNING
INFORMATION ABOUT THE COMMAND LINE.

PAGE 5 REV. 2

- — . A e —— S —— s —————

INTRODUCTION -------------------------oub-.--..o--..-..-o...o-..b

F

ERAL DESCRIPTION......-'-.l..-.o......-..--..-.....o.--...l..---.6

NAMING CONVENTIONS. ------- .-...oon..o......o-.coo........---oc--?

SYSCOM>A$KEYS.............-.-.--.-.......----..-....-....-......7
FILE SYSTEM ROUTINES.-.-.......---...-.--..-....0.&-..-...0-.-0-7
STRING MANIPULATION ROUTINES.seecceccccccncenocconccanccosncncnnse?

2
4
6

USER QUERY ROUTINES.-......‘.......I....l...-.-.........‘......10
SYSTEM INFORMATION ROUTINESI......O..‘.........-............‘..10
CONVERSION ROUTINES.....'IOI.....D.O'..I.-'..O..O-....I........1U

N
1
3
5
7
&
9

N NN NN N NN

MATHEMATICAL ROUTINES.eeevecenccccacs cecccnesasncvcncancncsnnasil
PARSING ROUTINES-..-.'................l‘.....-..0'..-..........11

.1
2

SOURCE LANGUAGE.-...--.'.o..o..-c.....--..-b.................-.12
LIBRARY BUILDING.ccasccsacoceasencosoacsorscenaanascseascsncncanall

Wi W~

3

x

LIBRARY SUBMISSIONS.ccceercccanccvercsecncnnasncccnnae ceeessmanceall

ROUTINest........-..-‘.....I.'.-.-.l..'-...-..-0.&.....-......015

FILE SYSTEM....l..............-..‘....'l...-.'.D...............1S

SIRING MANIPULATION -..-.-..0..-.0.....-.......-......-..26
USER GUERY.....'--.--..-....-'-. ---------------- '...-..-.-.....37

SYSTEM INFORMATION‘-.D....-.-...-......‘l..-..-....O..-‘I.‘...-39
MATHEMATICAL.....II.-I......I--I.Q'...........‘......Q..‘.C...I42

CONvERSION-....-.-....I.I......I......-'.'....-.--0...--.....0.44

R R N S A
L
NION W SN N 2m

PARSING.---.-.----..-..........-----...--..----..-...------...-47

SUMMARY AND KEYS-.....-.'.............'...O..-I....."......l......ss

5.1
5.2

SUMMARY-.-.'-.....-----.--0...-.....--..-u.-.-.-.-.-l'l-lnootooss

SYSCOM>A$KEYS.-...CQCUOon-o.-..o...l.-.---.-..----..-....&.-...S?

FAGE ¢ REV. 2

7 INTRODUCTION

APPLIE IS A NEW USER ORIENTED LIBRARY WHICH IS INTENDED TO FILL AN
EVER WIDENING GAP IN PRIME SOFTWARE, AT PRFSENT, APPLICATIONS AND

SYSTEMS PROGRAMMERS MUST CREATE USER INTERFACES FOR THEIR PROGRAMS
BASED UPON EITHER HIGH LEVEL LANGUAGE ROUTINES OR LOW LEVEL SYSTEHM
ROUTINES. IN MOST CASES, THE HIGH LEVEL CONSTRUCTS ARE EITHER

INADEQUATE OR PRESENT A "ROUGH" APPEARANCE TO THE TERMINAL USER, AND
THE LOW LEVEL ROUTINES, THOUGH ALLOWING ALMOST ANYTHING TO BE DONE,
ARE TYPICALLY DIFFICULT 70 USE. A SUBSEQUENT PRGBLEM ARISES WHEN

EVERYONE WRITES THEIR OWMN INTERFACES: NO TWO PROGRAMS LOOK ALIKE TO
THE USER. AS A RESULT, PRIME PRFSENTS AN INCONSISTENT AND OFTEN
SLOPPY FACE 70 THE USER PUBLIC.

THE PRIMARY GOAL OF APPLIE IS TO PROVIDE USERS WITH AN EASY TO USE
LIBRARY OF SERVICE ROUTINES WHICH FALLS BETWEEN THE VERY HIGH AND

VERY LOW LEVEL ROUTINES. 1IN MANY CASES, THE ROUTINES DO LITTLE HMORE
THAN CALL A LOWER LEVEL ROUTINE, FILLING IN THE EXTRA ARGUMENTS THAT
THE CALLER DOESN'T CARE ABOUT AND SOMETIMES REFORMATS WHAT THE LOW

LEVEL ROUTINE RETURNS, IN OTHER CASES, THE APPLIB ROUTINES ARE
FAIRLY COMPLEX, EITHER BECAUSE THEIR FUNCTIONALITY DPEMANDS IT, OR
BECAUSE CAREFUL CODING IS REQUIRED TO PERFORM A SEEMINGLY SIMPLE

OPERATION CORRECTLY. THE SECONDARY BENEFITS OF THIS LIBRARY ARE THAT
IT AVOIDS DUPLICATION OF EFFORT AND AUTOMATICALLY PROVIDES A
CONSISTENT FACE TO THE TERMINAL USER.

THE APPLIF ROUTINES ARE NOT INCLUDED IN FTNLIB FOR TWO REASONS.
FIRST, THEY DO MOT LOGICALLY BELONG THERE AS FTNLIB IS PRIMARILY FOR

THE LOW LEVEL SYSTEM ROUTINES. SECOND, FTNLIB IS VERY LARGE AND
REQUIRES A LONG TIME TO LOAD. THIS TIME IS ALREADY A SOURCE OF USER
COMPLAINT. THEREFORE APPLIB, AND ITS V-MODE VERSION VAPPLB, EXIST AS

INDEPENDENT LIBRARIES IN UFD=LIB ON THE SYSTEMWM.

2 GENERAL DESCRIPTION

ALL APPLIR ROUTINES ARE WRITTEN AS FORTRAN FUNCTIONS WHOSE VALUES ARE

EITHER A STATUS INDICATION (.TRUE. OR .FALSE.), AN APPROPRIATE
VALUE, OR AN ALTERNATE VALUE OR FORMAT OF A RETURNED ARGUMENT. IN
ADDITION, THE CALLER IS NEVER RETURNED A "CODE"™ TYPE ARGUMENT WHICH

MUST THEN BE DECODED. ALL ERROR DETECTION, REPORTING, AND, IF
POSSIRLE, RECOVERY ARE PERFORMED IN THE ROUTINE, RETURNING ONLY THE
INFORMATION OF SUCCESS OR FATLURE. ALTHGUGH THIS SEEMS LIMITING, AND

IN A SENSE IT IS, MOST USERS DON'T WANT TO KNOW THE DETAILS AS LONG
£S THE ERROR IS REPORTED AND ALL POSSIBLE RECOVERY PROCEDURES HAVE
BEEN TRIED. IN MOST CASFS, THE EXACT REASON FOR FAILURE COMES UNDER

THE HEADING OF "IRRELAVENT DIFFERENCE' AND IS IGNORED ANYWAY.

PAGE 7 REV. 2

2.1

NAMING CONVENTIONS

AS MENTIONED ABOVE, APPLIP ROUTINES ARE DESIGNED TO BE SIMPLE TOQ
USE. IN ADDIJTION, THEY ARE ALSO INTENDED 70 EE RELATIVELY

INDEPFNDENT OF SYSTEM REVISIONS. 7O FACILITATE THESE GOALS, ALL
APPLIB ROUTINES FOLLOW A CONSISTENT NAMING CONVENTION DESIGNED TO
AVOID THE POSSIBILITY OF CONFLICT BOTH WITH USER WRITTEN ROUTINES

AND SYSTEM ROUTINES. ALL APPLIB ROUTINES HAVE A FOUR LETTER
MNEMONIC NAME AND THE SUFFIX "S§A". THUS, FOR EXAMPLE, THE
RCUTINE TO OPEN A TEMPORAPY FILE IS NAMED “"TEMPSA". ALSO, 1IN

MANY CASES ROUTINES HAVE OPTIONS WHICH ARE SPECIFIED BY NAMED
"PARAMETER" KEYS WHICH ALL BEGIN WITH THE PREFIX "AS$".

SUBROUTINES THAT ARE USED INTERNALLY BY APPLIB ROUTINES HAVE A
SUFFIX OF "$3SA"™ AND SHOULD NOT BE USED UNDER ORDINARY
CIRCUMSTANCES. NO DOCUMENTATION 1S PROVIDED FOR THESE ROUTINES.

2.2

SYSCOM>ASKEYS

ALL "PARAMETER"™ KEYS ARE DEFINED IN A $INSERT FILE NAMED
SYSCOM>ALKEYS. THE KEY NAMES, FOLLOWING THE "AS$" PREFIX ARE

THREE OR FOUR LETTER MNEMOMICS SPECIFYING THE ALLOWABLE OPTIONS
FOR THE VARIOUS ROUTINES. THE KEYS ARE ORGANIZED ACCORDING TO
THE DESCRIPTIONS IN THIS DOCUMENT. IN ADDITION, THIS FILE

SUPPLIES ALL THE APPROPRIATF FUNCTION TYPF DECLARATIONS FOR THE
APPLIB ROUTINES. A COMPLETE LISTING OF SYSCOM>ASKEYS IS INCLUDED
IN SECTION 5 AND THE DETAILED DESCRIPTIONS OF THE KEYS ARE LEFT

FOR THE DESCRIPTIONS OF THE APPLICABLE ROUTINES.

FILE SYSTEM ROUTINES

THE FILE SYSTEM ROUTINES IN APPLIR GIVE THE USER A SIMPLE AND

CONSISTENT WAY TO SPECIFY THE MOST COMMON FILE SYSTEM OPERATIONS.
ACCORDINGLY, APPLIB DOES NOT PROVIDE THE USER WITH THE FULL
CAPABILITIES OF THE FILE SYSTEM SINCE FOR MORE COMPLICATED

OPERATIONS, THE FILE SYSTEM ROUTINES THEMSELVES ARE THE BEST
ROUTINES TO CALL. APPLIB SUPPORTS 80TH SEQUENTIAL ACCESS METHOD
(SAM) AND DIRECT ACCESS METHOD (DAM) FILES. THERE IS NO SUPPORT

FOR SEGMENT DIRECTORY TYPE FILES AS THE MIDAS SUBSYSTEM PROVIDES
THE HIGHER LEVEL FUNCTIONS WITH THESE FILES.

THE OPERATIONS PROVIDED IN APPLIB ARE:

PAGE R REV. 2

1. OPEN - NOTE, THERF ARE SEVERAL POSSIBILITIES HERE
2. CLOSE

3. REWIND

4. GO TO END-OF-FILE

5. TRUNCATE

6. DELETE

f. CHECK FOR FILE EXISTENCE

. CHECK FOR UNIT OPEN
9. READ CURRENT POSITION
10. SFT POSITION

ALL ROUTINES EXCEPT OPEN, DELETE AND EXISTENCE USE ONLY THE DOS
FILE UNIT AND NOT THE FILE NAME. ALSO, EACH ROUTINE CARRIES THE

NAME OF ITS FUNCTION, AS ABOVE, WITH ARGUMENTS CONSISTING OF ONLY
THE RELAVENT INFORMATION, USUALLY JUST THE UNIT NUMBER. NOTE THAT
ALL FILE NAMES, EXCEPT SCRATCH FILES, MAY BE TREE NAMES.

THE ONLY ROUTINES WHICH ARE AT ALL COMPLICATED ARE THE VARIOUS (5)
OPEN ROUTINES DUE MOSTLY TO THE MULTITUDE OF WAYS IN WHICH PROGRAMS

CAN ORTAIN THE NAME OF THE FILE THEY #ISH TO OPEN AND THE VARIOUS
POSSIBLE ACTIONS THEY MAY WANT 70 TAKE BY WAY OF VERIFICATION OR
ERROR RECOVERY. RATHER THAN PACK ALL POSSIBILITIES INTO A SINGLE

CALLING SEQUENCE, THUS MAKING IT ALWAYS DIFFICULT TO USE AND TO
REMEMBER, FIVE DIFFERENT ROUTINES EXIST TO PERFORM THE VARYING
LEVELS OF COMPLEXITY. IN THIS WAY, THE SIMPLE OPERATIONS CARE

REPRESENTED BY SIMPLE CALLING SEQUENCES AND ONLY THE COMPLEX
OPERATIONS NEFD TO SPECIFY COMPLEX ARGUMENT LISTS.

THF VARIOUS OPEN OPERATIONS ARE, BRIEFLY:

TEMP$SA - OPEN A SCRATCH FILE WITH UNIQUE NAME

1.

2. OPENSA - OPEN SUPPLIED NAME

3. OPNP$A = READ NAME AND OPEN

4. OPNVSA - OPFN SUPPLIED NAME WITH VERIFICATION AND DELAY
S

. OPVP$A - READ NAME AND OPEN WITH VERIFICATION AND DELAY

ALL ROUTINES ALLOW SELECTION OF THE FILE TYPE (SAM OR DAM) AND ALL

BUT TEMPSA ALLOW SPECIFICATION OF THE OPEN MODE (READ, WRITE, OR
READ/WRITE). SCRATCH FILES ARE ALWAYS OPENED FOR READ/WRITE.

VERIFICATION CONSISTS OF THE FOLLOWING OPTIONS:

1. VERIFY THAT THE FILE IS NEW; THAT IS, VERIFY THAT IT IS 0.K.

TO MODIFY A FILE WHICH ALREADY EXISTS.

2. SAME AS 1. ABOVE BUT IF THE FILE ALREADY EXISTS A THE USER

ND
SAYS IT IS O.K. TO MODIFY IT, ASK WHETHER THE OLD FI1ILE IS TO BE
OVERWRITTEN OR APPENDED T0.

3. VERIFY THAT THE FILE TS OLD; THAT 1S, DO NOT ALLOW CREATION OF
A NEW FILE. NOTE THAT IF THE OPEN MODE IS READ, THIS IS THE
ONLY POSSIBLE VERIFICATION OPTION,

DELAY CONSISTS OF THE FOLLOWING OPTIONS:

PAGE 9 REV. 2

1. IF AND ONLY IF THE FILE 1S "IN USE", WAIT A SUPPLIED NUMBER OF

SECONDS (ELAPSED TIME) AND TRY AGAIN.

2. THE ABILITY 70 RETRY 1. ABOVE A SPECIFIED NUMBER OF TIMES.

STRING MANIPULATION ROUTINES

THE STRING MANIPULATION ROUTINES ARE DESIGNED TO FACILITATE THE
HANDLING OF CHARACTER STRINGS. UNLESS NOTED OTHERWISE IT WILL BE

ASSUMED THAT ALL OF THESE ROUTINES OPERATE ON PACKED (2 CHARACTERS
PER WORD) STRINGS AND THAT THE DATA TYPE OF THE STRING DOES NOT
MATTER. MOST OF THE ROUTINES IN THIS SECTION CHECK THE VALIDITY OF

STRING SURSCRIPTS (CHARACTER POSITIONS)Y AND IF AN ERROR IS DETECTED
WILL CAUSE A MESSAGE TO BE DISPLAYED.

THESE ROUTINES ARE:

FILL A STRING WITH A CHARACTER (E.G. FILL A NAME
BUFFER WITH SPACES)

FILLSA

NLENS$A - DETERMINE THE OPERATIONAL LENGTH OF A STRING (NAME),
NOT INCLUDING TRAILING BLANKS.

MCHR2A - MOVE A CHARACTER FROM ONE PACKED STRING TO ANQTHER.

GCHRIA - GET A CHARACTER FROM A PACKED STRING.

TREE$A. - TEST FOR TREE NAME

TYPEEA - DETERMINE STRING TYPE

MSTRTA - MOVF ONE STRING TO ANOTHER

MSUB3$A - MOVE ONE SUBSTRING TO ANOTHER

CSTR$A - COMPARE TWO STRINGS FOR EQUALITY

CSUREA - COMPARE TWO SUBSTRINGS FOR EQUALITY

LSTRSA - LOCATE ONE STRING WITHIN ANOTHER

LSUBSA - LCCATE ONE SUBSTRING WITHIN ANOTHER

JSTR3IA JUSTIFY A STRING

2.5

USER QUERY ROUTINES

YSNOIA - ASK GUESTION AND OBTAIN A YES OR NO ANSWER

RNAMSA - PROMPT AND READ A NAME

PAGE 18 REV. 2

RNUMEA -~ PROMPT AND READ A NUMBER (DECIMAL, OCTAL, OR

HEXADECIMAL) INTO AN INTEGER*4 VARIABLE.

2.6 SYSTEM INFORMATION ROUTINES

TIMESA - TIME OF DAY

CTIMSA - CPU TIME SINCE LOGIN

DTIM$A - DISK TIME SINCE LOGIN

DATEZA - TODAY'S DATE, AMERICAN STYLE

EDATSA - TODAY'S DATF, EUROPEAN (MILITARY) STYLE
DOFY$A -~ TODAY'S DATE AS DAY OF YEAR ("JULIAN" DATE)

2.7 CONVERSION ROUTINES

ENCDSA - ENCODE FUNCTION THAT ADJUSTS THE "FORMAT" TO MAKE THE
NUMBER PRINTABLE TIF POSSIBLE. IF NOT, THE FIELD IS
FILLED WITH ASTERISKS.

CNVASLA - CONVERT ASCII NUMBER TO BINARY.

CNVBEA - CONVERT BINARY TO ASCII NUMBER.

2.6 MATHEMATICAL ROUTINES

RNDIgA

INITIALIZE RANDOM NUMBER GENERATOR "SEED".

RAND $A

GENERATE RANDOM NUMBER AND UPDATE “"SEED". THIS
GENERATOR IS BASED UPON A 32=-BIT WORD SIZE AND USES THE
LINEAR CONGRUENTIAL METHOD.

2.9 PARSING ROUTIMNES

CMDL$SA - PARSE PRIMOS TYPE COMMAND LINE.

FAGE 11 REV. 2

3 LIBRARY IMPLEMENTATION AND POLICIES

A STRONG EFFORT IS EBEING MADE TO KEEP APPLIR BCTH CONSISTENT IN ITS
USAGE AND EASY 70 BUILD, EXPAND, AND MAINTAIN. TO THIS END, SEVERAL

GUIDING PRIMCIPLES HAVE BEEN FOLLOWED IN ITS IMPLEMENTATION AND A SET
OF RULES ESTABLISHED TO CONTROL ITS FUTURE GROWTH.

3.1

SOURCE LANGUAGE

ALL ROUTINES IN APPLIB ARE WRITTEN IN FORTRAN TO FACILITATE THEIR
INCLUSION IN BGTH APPLIB AND VAPPLB. IN GENERAL, ANY LANGUAGE
WHICH CANNOY BE EITHER R—MODE OR V-MODE AS A COMPILER OPTION SHOULD

BE AVOIDED AS THE PROLIFERATION OF #WULTIPLE SQURCES OF THE SAME
ROUTINE IS GUARENTEED, SOONER OR LATER, TO CAUSE THE TWO LIBRARIES
TO FALL OUT OF SYNCHRONY. AS A MAJOR PREMISE OF APPLIB 18§

CONSISTENCY, INCOMPATIBLITIES BETWEEN THE R-MODE AND Vv~MODE
LIBRARIES ARE UNACCEPTIBLE.

THE ROUTINES HAVE BEEN CODED IN SUCH A WAY AS TO MAKE THEM EASILY
CALLABLE FROM ™MOST OTHER LANGUAGES, INCLUDING PLP AND 1576 ANSI
FORTRAN, BOTH OF WHICH CAN AUTOMATICALLY GENERATE STRING LENGTH

ARGUMENTS FOLLOWING STRING ARGUMENTS. AS A RESULT, IN THE ARGUMENT
PAIR "NAME,NAMLEN", THE NAME IS OFTEN UPDATED BY AN APPLIB ROUTINE,
BUT THE NAMLEN ARGUMENT IS NEVER TOUCHED. THE FUNCTION NLENSA CAN

RE USED TO DETERMINE THE OPERATIONAL LENGTH OF A RETURNED NAME.

ALL APPLIB ROUTINES WHICH EITHER ACCEPT KEYS AS ARGUMENTS OR CALL

OTHER APPLIB ROUTINES WHICH DO, USE THE SYSCOW>ASKEYS FILE TO
DEFINE THOSE KEYS. ALSO, THESE ROUTINES DO NOI TAKE ADVANTAGE OF
ANY PARTICULAR NUMERICAL VALUES THESE KEYS MAY HAVE IN CASE IT

RECOMES NECESSARY EITHER TO CHANGE THESE VALUES OR TO ADD NEW KEYS
WITH NUMERICAL VALUES WHICH DO NOT FIT THE PREVIOUS PATTERN. FOR
EXAMPLE, THERE ARE NO COMPUTED GOTO'S ON KEYS AND NO RANGE CHECKS

FOR VALIDITY OF A KEY. 1IN THIS WAY, IF A NEW SYSCOM>ASKEYS FILE IS
CREATED, BOTH THE USER PROGRAMS USING THE®M AND THE ROUTINES THEY
CALL WILL ALWAYS AGREE AS TO WHAT KEY MEANS WHAT. THE SAME IS TRUE

OF THE DECLARED TYPES OF THE APPLIB FUNCTIONS.

LIBRARY BUILDING

ALL ROUTINES ARE COMPILED INTO A SINGLE BINARY FILE WHICH IS THEN

CONVERTED INTO THE APPROPRIATE LIBRARY FILE WITH THE EDB UTILITY.
AT PRESENT, THE ONLY DIFFERENCE BETWEEN THE R-MODE AND V-MODE BUILD
PROCEDURES IS THE FTN COMPILE OPTION USED. FOR APPLIB, ALL

ROUTINES ARE COMPILED FOR 64R MODE LOADING AND FOR VAPPLB, ALL
ROUTINES ARE COMPILED FOR 64V MODE LOADING (SEGY. IN ADDITION, ALL
ROUTINES INCLUDED IN VAPPLB ARE PURE PROCEDURE AND MAY BE LOADED

INTO THE SHARED PORTION OF A SHARED PROCEDURE.

SINCE SEVERAL OF THE APPLIR ROUTINES CALL OTHER APPLIB ROUTINES,

THE LOAD ORDER IS IMPORTANT. THIS ORDER IS SPECIFIED IN THE
COMMAND FILES "C_APPL™ AND "C_VAPP" LOCATED IN UFD = APPLIB>SOURCE.

PAGE 12 REV. 2

3.3 LIBRARY SUBMISSIONS

APPLIB IS BY NO MEANS COMPLETE OR STATIC AND SUBMISSIONS ARE
WELCOME. HOWEVER, TO GUARANTEE THE GOALS OF APPLIB AS OUTLINED

ABOVE, STRICT CONTROL WILL BE MAINTAINED OVER THE LIBRARY AND ALL
SUBMISSIONS MUST CONFORM TO THE RULES SET OUT BELOW. THESE RULES,

THOUGH STRICT, ARE NOT MEANT TO DISCOURAGE SUBMISSIONS, BUT TO

PRESERVE THE INTEGRITY OF THE LIBRARY WHILE NOT REQUIRING AN
EXCESIVE AMOUNT OF WORK ON THE PART OF THE LIBRARY ADMINISTRATOR.

IF SUBMISSIONS ARE MADE WHICH DO NOT CONFORM TO THE RULES, THEY
WILL BE PLACED IN A "PENDING"™ FILE OR AN "IDEA"™ FILE, DEPENDING
UPON THEIR RELATIVE STATES OF COMPLETION. NO GUARANTEE IS HMADE

THAT ANY SUCH SUBMISSIONS WILL BE INCORPORATED INTO THE LIBRARY.

THE SPIRIT OF APPLIB SHOULD BE KEPT IN MIND WHEN SUBMITTING A

ROUTINE. FOR EXAMPLE, A ROUTINE TO PERFORM A MATHEMATICAL FUNCTION
MAY BE VERY USEFUL AND DESIREABLE, BUT PROBABLY BELONGS IN MATHLB,
NOT APPLIB. IN A SIMILAR WAY, A ROUTINE WHICH DOES TABLE BUILDING,

LOOK-UP, OR SORTING PROBABLY BELONGS IN EITHER THE MSORTS OR SRTLIB
LIBRARY.

THE LIST OF APPLIB "GROUND RULES"™ ARE:

1. THE ROUTINE MUST BE IN FORTRAN SUITABLE FOR BOTH APPLIB AND

VAPPLB.

2. THE PROUTINE SOULD NOT HAVE "CODE"™ AS AN ARGUMENT - THE ROUTINE

SHOULD HANDLE ALL ABNORMAL SITUATIONS.

3. IF REASONABLE, THE ROUTINE SHOULD BE A FUNCTION WHERE THE VALUE

OF THE FUNCTION IS AN ALTERNATE FORM OF THE RETURNED ARGUMENT(S)
OR A STATUS INDICATION (SEE #2).

6., THE ROUTINES SHOULD CONFORM TO THE FOLLOWING CONVENTIONS:

A. ALL ROUTINE NAMES SHOULD END WITH "SA".

f. ALL ROUTINES WHICH ACCEPT A KEY OR CALL OTHER APPLIB ROUTINES
WHICH DO, SHOULD USE SYSCOM>DASKEYS. ANY NEW KEYS WILL BE

ADDED TO SYSCOM>ASKEYS BY THE LIBRARY ADMINISTRATOR AND
SHOULD BEGIN WITH THE PREFIX "A$". ALSO, NO USE SHOULD BE
MADE OF ANY NUMERICAL RELATION BETWEEN KEYS.

C. ALL FILE SYSTEM CALLS SHOULD BE TO "ss$" ROUTINES WITH CODE
RATHFR THAN LOC(CODE) AS AN ARGUMENT.

D. RDTK$$ SHOULD BE USED INSTEAD OF CMREAD. IF THE &0 CHARACTER
LIMIT FOR RDTK$$ IS INSUFFICIENT, USE I%AA12.

E. IF REASONABLE, DO NQT USE FORTRAN READ'S AND WRITE'S.

F. THE USE OF "Z2-WAY" ARGUMENTS SHOULD BE AVOIDED IF POSSIBLE.

PAGE 13 REV. 2

ALL ROUTINES SHOULD BE THOROQUGHLY TESTED.

ALL SUBMISSIONS MUST BE ACCOMPANIED BY A LISTING WITH A STANDARD
PRIME HEADER. ALSO, THE LISTING SHOULD CONTAIN A DESCRIPTION OF

THE ARGUMENTS AS WELL AS ANY LIMITATIONS OR RESTRICTIONS EITHER
ON THEIR USE OR ON THEIR LOADING.

7. ALL SUBMISSIONS MUST BE ACCOMPANIED BY A DOCUMENT DESCRIBING
THEIR USE, ALL ARGUMENTS, AND ANY RESTRICTIONS OR LIMITATIONS ON
THEIR USE, THIS DOCUMENT WILL BE TINCLUDED IN THE LIBRARY
DESCRIPTION,

8. ALL SUBMITTED ROUTINES ARE SUBJECT TO MODIFICATION FOR THE
PURPOSE OF CONSISTENCY OR GENERALITY.

9. ALL SUBMISSIONS ARE SUBJECT TO REVIEW AND FINAL APPROVAL BY THE

LIBRARY ADMINISTRATOR BFFORE THEY ARE INCORPORATED INTO APPLIB.

PAGE 14 REV. 2

4 THE ROUTINES

BELOW ARE THE DETAILED DESCRIPTIONS OF EACH ROUTINE IN APPLIB, GROUPED
BY FUNCTION.

4.1 FILE SYSTEM

TEMPSA

TEMPSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG6= TEMPSA(TYPKEY,NAME, NAMLEN,UNIT)

CALL TEMPSA(TYPKEY,NAME, NAMLEN,UNIT)

ASSAMF, SAM FILE (.NE. ASDAMF)

WHERE TYPKEY

ASDAMF, DAM FILE

NAME = RETURNED NAME (6 CHARACTERS)
NAMLEN = LENGTH OF NAME BUFFER IN CHARACTERS (.GE. 6)
UNIT = DOS FILE UNIT

ALL ARGUMENTS ARE INTEGER+*2 EXCEPT NAME WHICH DOESN'T MATTER.

THIS ROUTINE OPENS A UNIQUE TEMPORARY FILE IN THE CURRENT UFD FOR
READING AND WRITING. THIS FILE WILL BE NAMED T$XXXX WHERE XXXX IS

A & DIGIT DECIMAL NUMBER BETWEEN 0000 AND 9999 INCLUSIVE. THE
ACTUAL NAME OPENED WILL BE RETURNED IN THE NAME BUFFER. IF THE
OPERATION IS SUCCESSFUL, THE FUNCTION VALUE IS .TRUE. AND IF THE

OPERATION IS UNSUCCESSFUL, THE FUNCTION VALUE IS .FALSE..

FAGE 15 REV. 2

OPENEA

OPENSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= OPENSACOPNKEY+TYPKEY, NAME,NAMLEN,UNIT)
CALL OPENSA(OPNKEY+TYPKEY,NAME, NAMLEN,UNIT)

ASREAD, OPEN FOR READING (.NE. ASWRIT OR ASRDWR)
ASWRIT, OPEN FOR WRITING
ASRDWR, OPEN FOR READING AND WRITING

WHERE OPNKEY

TYPKEY = ASSAMF, SAM FILE (.NE. ASDAMF)
ASDAMF, DAM FILE

NAME = FILE NAME (MAY BE A TREE NAME)

NAMLEN = LENGTH OF NAME IN CHARACTERS

UNIT = DOS FILE UNIT

ALL ARGUMENTS ARE INTEGER*2 EXCEPT NAME WHICH DOESN'T WMATTER.

THIS ROUTINE OPENS A FILE OF THE GIVEN NAME ON UNIT. 1F THE

OPERATION 1S SUCCESSFUL, THE FUNCTION VALUE IS .TRUE. AND IF THE
OPERATION IS UNSUCCESSFUL, THE FUNCTION VALUE IS .FALSE..

OPNP3A

- ———

OPNPSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= OPNP$A(MSG,MSGLEN,OPNKEY+TYPKEY NAME ,NAMLEN,UNIT)

CALL OPNP$A(MSG,MSGLEN,OPNKEY+TYPKEY, NAME ,NAMLEN,UNIT)

WHERE MSG

= PROMPT FOR NAME MESSAGE
MSGLEN = LENGTH OF MSG IN CHARACTERS
OPNKEY = ASREAD, OPEN FOR READING (.NE. ASWRIT OR ASRDWR)
ASWRIT, OPEN FOR WRITING
ASRDWR, OPEN FOR READING AND WRITING
TYPKEY = AS$SAMF, SAM FILE (.NE. ASDAMF)
ASDAMF, DAM FILE
NAME = FILE NAME (MAY BE A TREE NAME)
NAMLEN = LENGTH OF NAME IN CHARACTERS
UNIT = DOS FILE UNIT

ALL ARGUMENTS ARE INTEGER*Z2 EXCEPT NAME AND MSG WHICH DON'T
MATTER.

THIS ROUTINE GETS A NAME FROM THE USER AND OPENS IT ON UNIT. IF
THE OPERATION IS SUCCESSFUL, THE FUNCTION VALUE IS .TRUE. AND IF

THE OPERATION IS UNSUCCESSFUL OR NO NAME 1S SUPPLIED, THE FUNCTION
VALUE IS .FALSE..

PAGE 16 REV. 2

OPNVEA

OPNV$A IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= OPNVSA(OPNKEY+TYPKEY, NAME,NAMLEN, UNIT,VERKEY,WTIME,RETRYS)
CALL OPNVSA(OPNKEY+TYPKEY,NAME,NAMLEN,UNIT,VERKEY WTIME,RETRYS)

ASREAD, OPEN FOR READING C(.NE. ASWRIT OR A3SRDWR)
ASWRIT, OPEN FOR WRITING
A$SRDWR, OPEN FOR READING AND WRITING

WHERE OPNKEY

TYPKEY = ASSAWMF, SAM FILE (.NE. ASDAMF)
ASDAMF, DAM FILE
NAME = FILE NAME (MAY BE A TREE NAME)
NAMLEN = LENGTH OF NAWE IN CHARACTERS
UNIT = DOS FILE UNIT
VERKFY = ASNVER, NO VERIFICATION
ASUNEW, VERIFY NEW (OK TO MODIFY OLD)
ASOVAP, ASVNEW + OVERWRITE OR APPEND IF WRITING
ASVOLD, VERIFY OLD (ALREADY EXISTS)
WIIME = NUMBER OF SECONDS TO WAIT IF FILE IN USE
RETRYS = NUMBER OF TIMES TO RETRY IF FILE IN USE

ALL ARGUMENTS ARE INTEGFR*Z EXCEPT NAME WHICH DOESN'T WMATTER.

THIS ROUTINE OPENS A FILE OF THE GIVEN NAME ON UNIT. NOTE THAT THE

FUNCTIONS OF VERIFICATION AND DELAY AS DESCRIBED BELOW ARE
INDEPENDENT OF EACH OTHER.

IF WTIME AND RETRYS ARE SPECIFIED NON=-ZERC AND THE FILE TO BE
OPENED IS IN USE, THE OPEN WILL BE RETRIED THE SPECIFIED NUNMBER OF
TIMES, WITH WTIME SECONDS (ELAPSED TIME) BETWEEN EACH ATTEMPT. IF

THE NUMBER OF RETRIES EXPIRES, OR IF EITHER WTIME OR RETRYS IS
INITIALLY O AND THE FILE IS IN USE, THE FUNCTION RETURNS .FALSE..

IF VERIFICATION IS REQUESTED (VERKEY .NE. ASNVER), THE FOLLOWING
ACTIONS WILL BE TAKEN:

ASVUNEW IF THE FILE ALREADY EXISTS AND OPNKEY IS EITHER ASWRIT OR
A$RDWR, THE USER WILL BE ASKED IF IT IS CGK TC MODIFY THE
OLD F1LE. IF THE ANSWER IS "NO", THE FUNCTION RETURNS

.FALSE.. IF THE ANSWER IS "YES", THE FILE IS OPENED.

ASOVAP THIS IS THE SAME AS ASVNEW EXCEPT THAT IF AN QLD FILE IS

TO BE MODIFIED, THE USER IS ALSO ASKED LF THE FILE SHOULD
BE OVERWRITTEN OR APPENDED TO. IF THE ANSWER IS
"APPEND", THE FILF WILL BE POSITIONED TO END-OF-FILE.

ASVOLD THIS IS THE DEFAULT CASE IF OPNKEY=ASREAD. 1IF NOT, AND
IF THE NAMED FILE DOES NOT ALREADY EXIST, A NEW FILE WILL

NOT BE CREATED AND THE FUNCTION RETURNS .FALSE..

IF ANY ERRORS NOT COVERED ABOVE OCCUR WHILE OPENING THE FILE OR

POSITIONING IT (ASOVAP), THE FUNCTION RETURNS .FALSE.. IF THE OPEN
IS ULTIMATELY SUCCESSFUL, THE FUNCTION RETURNS .TRUE..

FAGE 17 REV. 2

OPVP3A

OPVPE$A IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= OPVPsR(MSG,MSGLEN,OPNKEY+TYPKEY,NAME ,NAMLEN,UNIT,
VERKEY , WTIME,RETRYS)
CALL OPVPSA(MSG,MSGLEN,OPNKEY+TYPKEY, NAME ,NAMLEN,UNIT,

VERKEY,WTIME, RETRYS)

WHERE MSG = PROMPT FOR NAME MESSAGE

MSGLEN = LENGTH OF MSG IN CHARACTERS

OPNKEY = ASREAD, OPEN FOR READING (.NE. ASWRIT OR ASRDWR)
ASWRIT, OPEN FOR WRITING
ASRDWR, OPEN FOR READING AND WRITING

TYPKEY = ASSAMF, SAM FILE (.NE. ASDAMF)
ASDAMF, DAM FILE

NAME = FILE NAME (MAY BE A TREE NAME)

NAMLEN = LENGTH OF NAME IN CHARACTERS

UNIT = DpOS FILE UNIT

VERKEY = ASNVER, NO VERIFICATION
ASVNEW, VERIFY NEW (OK TO MODIFY OLD)
ASOVAP, ASVNEW + OVERWRITE OR APPEND IF WRITING
ASVOLD, VERIFY OLD CALREADY EXISTS)

WTIME = NUMBER OF SECONDS TO WAIT IF FILE IN USE

RETRYS = NUMBER OF TIMES 7O RETRY IF FILE IN USE

ALL ARGUMENTS ARE INTEGFR*2 EXCEPT NAME AND MSG WHICH DON'T
MATTER.

THIS ROUTINE GETS A NAME FROM THE USER AND OPENS IT ON UNIT. NOTE
THAT THE FUNCTIONS OF VERIFICATION AND DELAY AS DESCRIBED BELOW ARE

INDEPENDENT OF EACH OTHER.

IF WTIME AND RFTRYS ARE SPECIFIED NON-ZERO AND THE FILE T0 BE

OPENED IS IN USE, THE OPEN WILL BE RETRIED THE SPECIFIED NUMBER OF
TIMFS, WITH WTIME SECONDS (ELAPSED TIME) BETWEEN EACH ATTEMPT. IF
THE NUMBER OF RETRIES EXPIRES, OR IF EITHER WTIME OR RETRYS IS

INITIALLY O AND THE FILE IS IN USE, THE FUNCTION RETURNS .FALSE..

IF VERIFICATIONMN IS REQUESTED (VERKEY _NE. ASNVER), THE FOLLOWING

ACTIONS WILL BE TAKEN:

ASYNEW IF THE FILE ALREADY EXISTS AND OPNKEY 1S EITHER ASWRIT OR

ASRDWR, THE USER WILL BE ASKED IF IT IS OK TO MODIFY THE
oLD FILE. IF THE ANSWER IS "HNO™, A NEW FILE NAME WILL BE
REQUESTED. IF THE ANSWER IS “YES", THE FILE IS OPENED.

ASOVAP THIS IS THE SAME AS ASVNEW EXCEPT THAT IF AN OLD FILE IS
TO BE MODIFIED, THE USER IS ALSQ ASKED IF THE FILE SHOULD

RF OVERWRITTEN OR APPENDED TO. IF THE ANSWER IS
"APPEND", THE FILE WILL BF POSITICNED TO END-OF-FILE.

PAGE 18 REV. 2

ASVOLD THIS IS THE DEFAULT CASE IF OPNKEY=ASREAD. IF NOT, AND

IF THE NAMED FILE DOES NOT ALREADY EXIST, A NEW FILE WILL
NOT RE CREATED AND A NEW NAME WILL BE REQUESTED.

IF ANY ERRORS NCT COVERED ABOVE OCCUR WHILE OPENING THE FILE OR
POSITIONING IT (ASOVAP), OR A NAME IS NOT SUPPLIED WHEN REQUESTED,
THE FUNCTION RETURNS .FALSE.. IF THE OPEN 1S ULTIMATELY

SUCCESSFUL, THE FUNCTION RETURNS .TRUE..

CLOSSA

CLOS$A IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= CLOSSACUNIT)
CALL CLOSSA(UNIT)

WHERE UNIT = DOS FILE UNIT

UNIT IS INTEGER%Z.

THIS ROUTINE CLOSES THE FILE OPEN ON FILE UNIT UNIT. IF THE

OPERATION IS SUCCESSFUL, THE FUNCTION IS .TRUE. AND 1F
UNSUCCESSFUL, THE FUNCTION IS .FALSE..

RWNDSA

RWND$A IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEGUENCE:

LOG= RWNDESA(UNIT)

CALL RWNDSA(UNIT)

WHERF UNIT = DOS FILE UNIT

UNIT IS INTEGER#*2.

THIS ROUTINE REWINDS THE FILE OPEN ON FILE UNIT UNIT. IF THE
OPERATION IS SUCCESSFUL, THE FUNCTION IS L.TRUE. AND 1F
UNSUCCESSFUL, THE FUNCTION IS .FALSE..

PAGE 19 REV. 2

GENDSA

GENDSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= GENDS$SA(UNIT)
CALL GENDSACUNIT)

WHERE UNIT = DOS FILE UNIT

UNIT IS INTEGER*Z2.

THIS ROUTINE POSITIONS TO END~-OF-FILE THE FILE OPEN ON FILE UNIT
UNIT. 1F THE OPERATION IS SUCCESSFUL, THE FUNCTION IS .TRUE. AND

IF UNSUCCESSFUL, THE FUNCTION IS .FALSC..

TRNC$SA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEGUENCE:

LOG= TRNCSA(UNIT)
CALL TRNCSACUNIT)

WHERE UNIT = DPOS FILE UNIT

UNIT IS INTEGER=*2.

THIS ROUTINE TRUNCATES THE FILE OPEN ON FILE UNIT UNIT. IF THE

OPERATION 1S SUCCESSFUL, THE FUNCTION IS L.TRUE. AND IF
UNSUCCESSFUL, THE FUNCTION IS .FALSE..

DELESA

DELE$A IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= DELESA(NAME,NAMLEN)

CALL DELESA(NAME, NAMLEN)

WHERE NAME FILE NAME (MAY BE A TREE NAME)

NAMLEN = LENGTH OF NAMF IN CHARACIERS

NAMLEN IS INTEGER*2, BUT THE TYPE OF NAME DOESN'T MATTER.

THIS ROUTINE WILL DELETE THE FILE IN NAME. IF THE OPERATION IS
SUCCESSFUL, THE FUNCTION IS .TRUE. AND IF UNSUCCESSFUL, THE

FUNCTION IS .FALSE..

PAGE 2Uu REV. 2

EXSTSA

EXSTsA IS A LOGICAL FUNCTICN WITH THE FOLLOWING CALLING SEQUENCE:

LOG= EXSTSA(NAME,NAMLEN)

WHERE NAME FILE NAME (MAY BE A TREE NAME)

LENGTH OF NAME IN CHARACTERS

NAMLEN

NAMLEN IS INTEGER*2, BUT THE TYPE OF NAME DOESN'T MATTER.

THIS ROUTINE WILL RETURN .TRUE. IF THE FILE EXISTS AND .FALSE. 1IF
THE FILE DOES NOT EXIST OR AN ERROR WAS ENCOUNTERED.

UNITSA

UNIT$SA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= UNITSACUNIT)

WHERE UNIT = DOS FILE UNIT

UNIT IS INTEGER*Z2.

THIS ROUTINF WILL RETURN .TRUE. IF THE UNIT IS OPEN AND JFALSE.
IF THE UNIT IS NOT OPEN.

RPOSEA

RPOS$A IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= RPOS$A(UNIT,POS)

CALL RPOSSA(UNIT,POS)

WHERE UNIT DOS FILE UNIT

(131}

POS RETURNED ABSOLUTE POSITION

UNIT IS INTEGER=*2 AND POS IS INTEGER=*4,

THIS ROUTINE WILL RETURN THE CURRENT ABSOLUTE POSITION OF THE FILE
OPEN ON UNIT UNIT. IF THE OPERATION IS SUCCESSFUL, THE FUNCTION IS

.TRUE. AND IF UNSUCCESSFUL, THE FUNCTION IS .FALSE..

PAGE 21 REV. 2

POSN$A

POSNSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= POSNSA(POSKEY,UNIT,POS)
CALL POSNSA(POSKEY,UNIT,POS)

WHERE POSKEY A$ABS, ABSOLUTE POSITION (.NE. ASREL)
A$REL, RELATIVE POSITION

UNIT DOS FILE UNIT

POS POSITION (RELATIVE OR ABSOLUTE)

POSKEY AND UNIT ARE INTEGER*2 AND POS IS INTEGER*4.

THIS ROUTINF WILL POSITION THE FILE OPEN ON FILE UNIT UNIT TO THE
SUPPLIED POSITION. IF THE OPERATION IS SUCCESSFUL, THE FUNCTION IS

-TRUE. AND IF UNSUCCESSFUL, THE FUNCTION IS .FALSE..

TSCNZA

-—— e - —

TSCN$¥A IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEGQUENCE:

LOG= TSCNSA(KEY,UNITS,ENTRY,MAXSIZ,ENTSIZ,MAXLEV,LEV,CODE)
CALL TSCNS$AC(KEY, UNITS,ENTRY, MAXSIZ, ENTSIZ, MAXLEV,LEV,CODE)

WHERE KEY = ASTREE, SCAN FULL TREE

ASNUFD, DO NOT SCAN SUBUFDS
ASNSEG, DO NOT SCAN SEGMENT DIRECTORIES
ASCUFD, SCAN CURRENT UFD ONLY
ASDLAY, PAUSE WHEN POPPING UP TO DIRECTORY
ASBACK, RACK UP ONE LEVEL (FOR ERROR HANDLING)

UNITS = ARRAY OF UNIT NUMBERS MAXLEV LONG

ENTRY = ARRAY MAXSIZ * MAXLEV LONG

MAXSIZ = SIZE OF EACH ENTRY IN ENTRY ARRAY

ENTSIZ = SET 7O SIZE OF CURRENT ENTRY

MAXLFV = MAXIMUM NUMBER OF LEVELS TO SCAN

LEV = CURRFNT LEVEL

CCDE = RETURNED FILE SYSTEM CODE

ALL PARAMETERS ARE INTEGER*Z.

TSCNSA SCANS THE FILE SYSTEM TREE STRUCTURE (STARTING WITH THE HOME

UFD) USING RDENS$ AND SGDR$% TO READ UFD AND SEGMENT DIRECTORY
ENTRIES INTO THE ENTRY ARRAY. EACH CALL TO TSCN$A RETURNS THE NEXT
FILE ON THE CURRENT LEVFL OR THE FIRST FILE ON THE NEXT LOWER LEVEL

OF THE STRUCTURE. THE VARIABLE LEV IS USED TO KEEP TRACK OF THE
CURRENT LEVFL. FOR EXAMPLE, AFTER THE FIRST CALL TO TSCN3$A (WITH
LEV=0), LEV WILL BE RETURNED AS 1, AND ENTRY(1,1) WILL CONTAIN THE

UFD ENTRY DESCRIBING THE FIRST FILE IN THE HOME UFD. IF THIS FILE
IS A SUBUFD, FOLLOWING THE NEXT CALL 7O TSCNS$A, LEV WILL BE 2, AND
ENTRY(1,2) wILL CONTAIN THE ENTRY FOR THE FIRST FILE IN THE SUBUFD.

THE VALUES OF KEY HAVE THE FOLLOWING MEANINGS:

PAGE 22 REV. 2

ASTREE ALL ENTRIES IN THE TREE STRUCTURE ARE RETURNED UP TO MAXLEV

LEVELS DEEP. (LEVELS BELOW LEVEL MAXLEV ARE IGNORED.)

ASNUFD WHEN A SUBUFD IS ENCOUNTERED (IN THE HOME UFD), ITS ENTRY IS

RETURNED, BUT NO FILES UNDER THAT SUBUFD ARE RETURNED. IN
THE ABSENSE OF SEGMENT DIRECTORIES, THIS EFFECTIVELY LIMITS
THE TREE SCAN TO THE HOME UFD.

A$SNSEG FILES IMSIDE SEGMENT DIRECTORIES ARE NOT RETURNED.

ASCUFD THIS IS A LOGICAL COMBINATION OF ASNUFD AND ASNSEG =—- ONLY

FILES IN THE HOME UFD ARE RETURNED.

ASDLAY THIS KEY IS IDENTICAL TO A$TREE EXCEPT THAT DIRECTORY

FNTRIES ARE RETURNED TWICE, ONCE ON THE WAY DOWN (AS FOR
ASTREE), AND AGAIN ON THE WAY UP. (THIS IS NECESSARY, FOR

CXAMPLE, TO IMPLEMENT TREE-DELETE FUNCTIONALITY, SINCE A
DIRECTORY CANNOT BE DELETED UNTIL IT HAS BEEN EMPTIED.)

A$BACK THIS KEY IS USED TO BACK UP ONE LEVEL IN THE TREE, USED FOR

FRROR HANDLING.

13

FOR THE FIRST CALL OF TSCN$A, LEV SHOULD BE EQUAL T0 O.

THEREAFTER IT SHOULD NOT BE MODIFIED UNTIL EOF IS REACHED ON THE
TOP LEVEL UFD AT WHICH POINT LEV WILL BE RESET TO O.

2)

THE ENTRIES IN THE ENTRY ARRAY ARE IN RDENS$S FORMAT. FOR
"ENTRIES" INSIDE A SEGMENT DIRECTORY, ALL INFORWMATION FROM THE
DIRECTORY ENTRY IS FIRST COPIED DOWN A LEVEL. ENTRY(2,LEV) IS

SET TO N AND ENTRY(3,LEV) IS THEN SET TO A 16-BIT ENTRY NUMBER.
FOR NESTED SEGMENT DIRECTORIES, THE TYPE FIELD OF THE ENTRY IS
SET APPROPRIATELY BY OPENING THE FILE WITH SRCH$$S. (THE FILE IS

3)

THEN IMMEDIATELY CLOSED AGAIN.)

THE PARAMETER ENTSIZ 1S SET TO THE NUMBER OF WORDS RETURNED BY

4)

RDEN$$. INSIDE SEGMENT DIRECTORIES, IT SHOULD BE IGNORED.

THE TYPE FIELDS IN THE ENTRY ARRAY -- ENTRY(20,1) =- SHOULD NOT

5)

BE MODIFIED. (TSCN$A USES THEM TO WALK UP AND DOWN THE TREE.)

WHEN TSCN$A REQUIRES A FILE UNIT, IT USES UNITSCLEV). BY USING

RDEN$S AND SGDR$3$ READ-POSITION AND SET-POSITION FUNCTIONS
CAREFULLY, IT IS POSSIBLE TO DYNAMICALLY REUSE FILE UNITS (E.G.,
TO SCAN TREES MORE THAN 16 LFVELS DEEP).

6)

TSCN$A RETURNS .TRUE. UNTIL A NON-ZERO FILE SYSTEM CODE IS
RETURNED OR UNTIL ESEOF IS RETURNED WITH LEV=0 (TOP LEVEL).

ESEOF ON LOWER LEVELS OF THE TREE IS "SUPPKRESSED'", AND CODE IS
RETURNED AS ZERO.

7)

TSCNSA REQUIRES OWNER RIGHTS IN THE HOME UFD.

PAGE 23 REV. 2

SAMPLE USE QF TSCNEA

THE FOLLOWING PROGRAM ILLUSTRATES HOW TSCN$A CAN BE USED TO PERFORM
A TREE LISTF,

$INSERT SYSCOM>ERRD.F
$INSERT SYSCOM>KEYS.F

$INSERT SYSCOM>ASKEYS

¢
INTEGER MAXLEV,MA¥S1IZ
PARAMETER MAXLEV=16 /* MAXIMUM LEVELS TO SCAN
PARAMETER MAXSIZ=24 /* MAXIMUM SIZE OF EACH SLICE IN ENTRY
INTEGER I, L, ENTRY(MAXSIZ, MAXLEV) UNITS(MAXLEV), CODE_NLEVSA
LOGICAL TSCNSA
DATA UNITS/1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16/
C
10 L=0 /x INITIALIZE LEVEL COUNTER
100 IF(TSCNSA(ASTREE,UNITS,ENTRY MAXSIZ,I MAXLEV,L,CODE}XGOTO 105
IF (CODE.NE.ESEOF) CALL ERRPRS$(ESNRTN,CODE,0,0,0,0)
CALL EXIT /* ALL DONE IF EZEOF
G070 10 /* RESTART IF 'S* TYPED
C
105 00 200 I=1,L /* CONSTRUCT TREENAME
IF (ENTRY(2,I).EQ.0) GOTO 150 /* BRANCH IF SEGDIR
CALL TNOUACENTRY(2,1) NLENSACENTRY(2,1),32))
GOT0 170
c
150 CALL TNOUAC'(',1) /* FORMAT SEGDIR ENTRY NUMBER
CALL TODECC(ENTRY(3,1))
CALL TNOUAC*)',1)
C
170 IF (I.NE.L) CALL TNOUA(C' > ',3) /* TREENAME SEPARATOR
200 CONTINUE
CALL TONL
GOTO 100

END

PAGE 24 REV. 2

L.2ASTRING MANIPULATION

I~

ILLS

>

IS AM INTEGER FUNCTION WITH THE FOLLOWING CALLING SEGUENCE:

e}

ILLS

»

INT= FILLSA(NAME, NAMLEN,CHAR)

CALL FILLSA(NAME,NAMLEN,CHAR)

WHERE NAME = NAME BUFFFR TO FILL
NAMLEN = LENGTH OF NAME IN CHARACTERS
CHAR = FILL CHARACTER IN FORTRAN A1 FORMAT

NAMLEN AND CHAR ARE INTEGER*Z AND THE TYPE OF NAME DOESN'T MATTER.

THIS ROUTINE WILL FILL THE NAME BUFFER WITH THE FILL CHARACTER

SUPPLIED. THE FUCTION IS INTEGER, BUT THE VALUE IS ALWAYS 0.

NLENSA

NLEN$A 1S AN INTEGER*Z2 FUNCTION WITH THF FOLLOWING CALLING SEQUENCE:

I+x2= NLENSA(NAME,NAMLEN)
CALL NLENSA(NAME, NAMLEN)

NAME BUFFER TO TEST
LENGTH OF NAME IN CHARACTERS

WHERE NAME
NAMLEN

NAMLEN IS INTEGER*2 AND THE TYPE OF NAME DOESN'T MATTER.

THIS ROUTINE WILL RETURN AS ITS FUNCTION VALUE THE OPERATIONAL LENGTH
OF THE NAME IN NAME, NOT INCLUDING TRAILING BLANKS.

PAGE 25 REV. 2

MCHRSA

MCHR$A IS AN INTEGFR FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

INT= MCHRSA(TARRAY,TCHAR,FARRAY , FCHAR)
CALL MCHR$SA(TARRAY,TCHAR, FARRAY ,FCHAR)

WHERE TARRAY RECEIVING ("T0") PACKED ARRAY

TCHAR = CHARACTER POSITION 1IN TARRAY
FARRAY = SOURCE ("FROM") PACKED ARRAY
FCHAR = CHARACTER POSITION IN FARRAY

TCHAR AND FCAHR ARE INTEGER*2, BUT THE TYPES OF TARRAY AND FARRAY

DON'T MATTER.

THIS ROQUTINE REPLACES THE FORTRAN STATFMENT:

TARRAY(TCHAR)=FARRAY(FCHAR)

WHEN TARRAY AND FARRAY ARE DECLARED LOGICAL=*1 (IBN FORTRAN)Y OR OF A 1
CHARACTER DATA TYPE. OMLY THE TCHAR'TH CHARACTER IN TARRAY IS
REPLACED.

THE FUNCTION VALUE WILL BE THE CHARACTER THAT WAS MOVED IN FORTRAN A1
FORMAT; I.E., THE CHARACTER IN THE LEFT MOST BYTE, RIGHT PADDED WITH

BLANKS.

GCHREA

GCHR$SA IS AN INTEGFR FUNCTION WITH THE FOLLOWING CALLING SEGUENCE:

INT= GCHRSA(FARRAY,FCHAR)
CALL GCHR$A(FARRAY,FCHAR)

WHERE FARRAY
FCHAR

SOURCE ("FROM"™) PACKED ARRAY
CHARACTER POSITION IN FARRAY

Hnn

FCAHR IS INTEGER%x2, BUT THE TYPE OF FARRAY DOESN'T MATTER.

THIS ROUTINE REPLACES THE FORTRAN STATEMENT:

CHAR=FARRAY(FCHAR)

WHEN FARRAY IS DECLARED LOGICAL*1 (IBN FORTRAN)Y OR OF A 1 CHARACTER
DATA TYPE.

THE FUNCTION VALUE WILL BE THE ACCESSED CHARACTER IN FORTRAN A1 FORMAT;
1.E., THE CHARACTER IN THE LEFT MOST BYTE, RIGHT PADDED WITH BLANKS.

PAGE 26 REV. 2

IREESA

TREESA IS AN LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= TREESA(NAME,NAMLEN,FSTART, FLEN)

WHERE NAME = FILE NAME
NAMLEN = LENGTH OF NAME IN CHARACIERS
FSTART = FIRST CHARACTER OF FINAL FILE NAME IN TREE
FLEN = LENGTH OF FINAL FILE NAME IN_CHARACTERS

ALL ARGUMENTS ARE INTEGER*2 AND THE TYPE OF NAME DOESN'T MATTER.

THIS ROUTINE WILL SCAN A FILE NAME AND DETERMINE IF IT IS A TREE NAME.
IF IT IS A TREE NAME, THE FUNCTION IS .TRUE. AND IF NOT, IT IS
.FALSE.. IN ADDITION, THE FINAL NAME (OR ENTIRE NAME IF NOT IN A TREE)

IS LOCATED IN THE STRING. NOTE THAT IF THE NAME IS EMPTY,
FSTART=FLEN=0.

PAGE 27 REV. 2

TYPESA

TYPESA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG = TYPESACKEY,STRING,LENGTH)

ARGUMENTS :
KEY = STRING TYPE 7O BE TESTED FOR, POSSIBLE KEYS ARE:
A$SNAME - CAN STRING BE INTERPRETED AS A NAME,
A$DEC - CAN STRING BE INTERPRETED AS A DECIMAL NUMBER,
ASOCT - CAN STRING BE INTERPRETED AS AN OCTAL NUMBER,
ATHEX - CAN STRING BE INTERPRETED AS A HEXADECIMAL NUMBER.
STRING = STRING TO BE TESTED, PACKED TwO CHARACTERS PER WORD.
LENGTH = LENGTH QF STRING, IN CHARACTERS.
FUNCTION:

TYPESA WILL TEST A CHARACTER STRING TO DETERMINE IF IT CAN BE
INTERPRETED AS THE TYPE SPECIFIED BY KEY. A STRING IS NAME IF IT

CONTAINS AT LEAST ONE ALPHABETIC OR SPECIAL CHARACTER (OTHER THAN A
LEADING + OR =), A DECIMAL NUMBER IF IT CONTAINS ONLY THE DIGITS O
- G, AN OCTAL NUMBER IF IT CONTAINS ONLY THE DIGITS O - 7, AND A

HEXADECIMAL NUMPER IF IT CONTAINS ONLY THE DIGITS O = 9 AND THE
CHARACTERS A - F (UPPER CASE ONLY). A NUMBER MAY HAVE A LEADING
SIGN AND ANY NUMBER OF BLANKS BETWEEN THE SIGN AND THE FIRST DIGIT,

HOWEVER IMBEDDED BLANKS WITHIN THE NUMBER ITSELF ARE NOT ALLOWED.
A NUMBER MUST ALSO HAVE AT LEAST ONE DIGIT.
LEADING AND TRAILING BLAMKS ARE IGNORED. THE FUNCTION IS TRUE

IF STRING SATISFIES THE CONDITIONS REQUIRED BY THE KEY USED,
OTHFRWISE IT IS FALSE. A NULL STRING (IE. LENGTH EQUAL TO ZEROQ)
WILL ONLY RETURN A FUNCTION VALUE OF TRUE IF KEY IS ASNAME.

ALL ARGUMENTS ARE INTEGER*2 FXCEPT STRING WHOSE TYPE DOES NOT
MATTER.

APPLIB CALLS:

GCHR$A, NLENSA

PAGE 28 REV. 2

MSTREA

MSTREA IS AN INTEGER FUNCTION USED TO MOVE ONE STRING TO ANOTHER, 1IT
HAS THE FOLLOWING CALLING SEGUENCE:

INT = MSTR$ACA,ALEN,B,BLEN)
CALL MSTR$ACA,ALEN,B,BLEN)

ARGUMENTS =
A = SOURCE STRING, PACKED TWO CHARACTERS PER WORD,
ALEN = LENGTH OF A, IN CHARACTERS, MUST BE .GE. ZERO,
B = DESTINATION STRING, PACKED,
BLEN = LENGTH OF B, IN CHARACTERS, MUST BE .GE. ZERO.
FUNCTION:

MSTR$A WILL MOVF THE SOURCE STRING TO THE DESTINATION STRING.
1F THE SOURCE STRING IS LONGER THAN THE DESTINATION STRING IT WILL

BE TRUNCATED AND IF IT IS SHORTER IT WILL BE PADDED WITH BLANKS.
THE SOURCE AND DESTINATION STRINGS MAY OVERLAP. THE FUNCTION VALUE
WILL BE EQUAL TO THE NUMBRER OF CHARACTERS MOVED (EXCLUDING BLANK

PADDING). 1IF EITHER STRING IS NuULL (IF. LENGTH EQUAL TO ZERO) NO
CHARACTERS ARE MOVED AND THE FUNCTION WILL BE EQUAL TO ZERO.

ALL ARGUMENTS ARE INTEGER*2 EXCEPT A AND B WHOSE TYPES DO NOT
MATTER.

APPLIB CALLS:

MSUB$SA, NLENSA

PAGE 29 REV. 2

MSUBSA

MSUB$A IS AN INTEGER FUNCTION USED TO MOVE ONE SUBSTRING TO ANOTHER, IT
HAS THE FOLLOWING CALLING SEQUENCE:

INT = MSUBSACA,ALEN,AFC,ALC,B,BLEN,BFC,BLC)
CALL MSUBSA(CA,ALEN, AFC,ALC,B,BLEN,BFC,BLC)

ARGUMENTS 2

A = ARRAY CONTAINING SOURCE SUBSTRING, PACKED TWO CHARACTERS PER
WORD, '

ALEN = LENGTH OF A, IN CHARACTERS, MUST BE .6E. ZERO,

AFC = FIRST CHARACTER POSITION OF SUBSTRING IN A,

ALC = LAST CHARACTER POSITION OF SUBSTRING IN A,

B = ARRAY CONTAINING DESTINATION SUBSTRING, PACKED TWO
CHARACTERS PER WORD,

BLEN = LENGTH OF B, IN CHARACTERS, MUST BE .GE. ZERO,

BFC = FIRST CHARACTER POSITION OF SUBSTRING IN B,

BLC = LAST CHARACTER POSITION OF SUBSTRING IN B.

FUNCTION:

MSuUP$A WILL MOVE THE SOURCE SUBSTRING CONTAINED IN A TO THE
DESTINATION SUBSTRING CONTAINED IN B. IF THE SOURCE SUBSTRING IS
LONGER THAN THE DESTINATION SUBSTRING IT WILL BE TRUNCATED AND IF

IT IS SHORTER IT WILL BE PADDED WITH BLANKS. THE SOURCE AND

DESTINATION SUBSTRINGS MAY OVERLAP.
IFf EITHER SUBSTRING IS NuLL (IE. LENGTH EQUAL TO ZERO) NO

CHARACTERS ARE MOVED AND THE FUNCTION WILL BE EQUAL TO ZERO,
OTHERWISE IT IS EQUAL TO THE NUMBER OF CHARACTERS MOVED (EXCLUDING
BLANKS USED FOR PADDING).

THIS ROUTINE CHECKS THE VALIDITY OF THE STRING SUBSCRIPTS AND
WILL DISPLAY AN ERROR MESSAGE IF AN ILLEGAL SUBSCRIPT IS
ENCOUNTERED. A SUBSCRIPT MUST BE GREATER THAN ZERO (UNLESS BOTH

ARE ZERO, IN WHICH CASE THE SUBSTRING IS NULL) AND THE SECOND
SUBSCRIPT MUST BE GREATER THAN CR EQUAL TG THE FIRST. BOTH
SURSCRIPTS MUST BE LESS THAN OR EQUAL TO THE STRING LENGTH.

ALL ARGUMENTS ARE INTEGER*2 EXCEPT A AND B WHOSE TYPES DO NOT
MATTER.

APPLIB CALLS:

MCHRSA

PAGE 30 REV. 2

CSTRSA

CSTR$A IS A LOGICAL FUNCTION USED TO COMPARE TWO STRINGS FOR EQUALITY,
IT HAS THE FOLLOWING CALLING SEQUENCE:

LOG = CSTR$A(A,ALEN,B,BLEN)

ARGUMENTS ¢
A = STRING TO BE COMPARED, PACKED THWRO CHARACTERS PER WORD,
ALEN = LENGTH OF A, IN CHARACTERS, MUST BE .GE. ZERO,
B = STRING TO BE COMPARED AGAINST, PACKED,
BLEN = LENGTH OF B, IN CHARACTERS, MUST BE .GE. ZERO.
FUNCTION:

CSTR$SA WILL COMPARE TWO STRINGS FOR EQUALITY. THE FUNCTION

WILL BE TRUE IF EACH CHARACTER 1IN STRING A MATCHES THE
CORRESPONDING CHARACTER IN STRING B, OR IF BOTH STRINGS ARE NULL
(IE. LENGTH EQUAL TO ZERO), OTHERWISE THE FUNCTION WILL BE FALSE.

ONLY THE OPERATIONAL LENGTHS ARE USED IN THE COMPARISION (IE.
TRAILING BLANKS ARE IGNORED). CSTRSA AVOIDS THE RESTRICTIONS
IMPOSED BY NAMEGS CONCERNING TRAILING BLANKS AND NUMERIC FIELDS.

ALL ARGUMENTS ARE INTEGER*2 EXCEPT A AND B WHOSE TYPES 0O NOT
MATTER.

APPLIB CALLS:

CSUBSA, NLENSA

PAGE 31 REV. 2

CSUBSA

CSUB$A IS A LOGICAL FUNCTION USED TO COMPARE SUBSTRINGS FOR EQUALITY,
IT HAS THE FOLLOWING CALLING SEQUENCE:

LOG = CSUBSACA, ALEN,AFC,ALC,B,BLEN,BFC,BLC)

ARGUMENTS :

A = ARRAY CONTAINING SUBSTRING TO BE COMPARED, PACKED TWO
CHARACTERS PER WORD,

ALEN = LENGTH OF A, IN CHARACTERS, MUST BE .GE. ZEROQ,

AFC = FIRST CHARACTER POSITION OF SUBSTRING IN A,

ALC = LAST CHARACTER POSITION OF SUBSTRING IN A,

B = ARRAY CONTAINING SUBSTRING TO BE COMPARED AGAINST, PACKED
TWO CHARACTERS PER WORD,

BLEN = LENGTH OF B, IN CHARACTERS, MUST BE .GE. ZERO,

BFC = FIRST CHARACTER POSITION OF SUBSTRING IN B,

BLC = LAST CHARACTER POSITION 9F SUBSTRING IN B.

FUNCTION:

CSUB$A WILL COMPARE TWO SUBSTRINGS FOR EQUALITY. IF EACH

CHARACTER IN THE A SUBSTRING MATCHES THE CORRESPONDING CHARACTER IN
THE B SUBSTRING, OR BOTH SUBSTRINGS ARE NULL (IE. LENGTH EQUAL TO
ZERO) THE FUNCTION WILL BE TRUE., IF TWO CORRESPONDING CHARACTERS

DO NOT MATCH, OR IF THE LENGTHS OF THE SUBSTRINGS ARE NOT EQUAL THE
FUNCTION WILL RE FALSE.
THIS ROUTINE CHECKS THE VALIDITY QOF THE STRING SUBSCRIPTS AND

WILL DISPLAY AN ERROR MESSAGE IF AN ILLEGAL SUBSCRIPT IS
ENCOUNTERED. A SUBSCRIPT MUST BE GREATER THAN ZERO (UNLESS BOTH
ARE 2ERO, IN WHICH CASE THE SUBSTRING IS NULL) AND THE SECOND

SUBSCRIPT MUST BE GREATER THAN OR EQUAL TO THE FIRST. BOTH
SUBSCRIPTS MUST BE LESS THAN OR EQUAL TO THE STRING LENGTH.

ALL ARGUMENTS ARE INTEGER*2 EXCEPT A AND B WHOSE TYPES DO NOT
MATTER.

APPLIB CALLS:

GCHRS$A

FAGE 32 REV. 2

LSTRSA

= o

LSTR$A IS A LOGICAL FUCTION USED TO LOCATE ONE STRING WITHIN ANOTHER,
IT HAS THE FOLLOWING CALLING SEQUENCE:

LOG = LSTR$A(A,ALEN,B,BLEN,FCP,LCP)
CALL LSTR$SA(A,ALEN,B,BLEN,FCP,LCP)

ARGUMENTS =

A = STRING TO BE LOCATED, PACKED TWO CHARACTERS PER WORD,

ALEN = LENGTH OF A, IN CHARACTERS, MUST BE .GE. ZERO,

B = STRING TO BE SEARCHED, PACKED,

BLEN = LENGTH OF B, IN CHARACTERS, MUST BE .GE. ZERO,

FCP = FIRST CHARACTER POSITION IN B OF SUBSTRING THAT MATCHES
STRING A,

LCP = LAST CHARACTER POSITION IN B OF SUBSTRING THAT MATCHES
STRING A.

FUNCTION:

LSTR$A WILL SEARCH STRING B FOR THE FIRST OCCURENCE OF STRING
A. IF STRING A IS FOUND THE FUNCTION WILL BE TRUE AND FCP AND LCP

WILL BE EQUAL TO THE CHARACTER POSITIONS OF THE SUBSTRING IN B THAT
MATCHES STRING A. IF STRING A IS NOT FOUUND OR IF EITHER STRING IS
NULL (IE., LENGTH EQUAL TO ZERO) THE FUNCTION WILL BE FALSE AND FCP

AND LCP WILL BE EQUAL TO ZERO. EACH STRING IS LOGICALLY TRUNCATED
TO ITS OPERATIONAL LENGTH BEFORE THE SERRCH IS PERFORWED (IE.
TRAILING BLANKS ARE IGNORED).

ALL ARGUMENTS ARE INTEGER*Z2 EXCEPT.A AND B WHOSE TYPES DO NOT
MATTER.

APPLIB CALLS:

LSUR$A, NLENSA

PAGE 33 REV. 2

LSUBSA

LSUBSA IS A LOGICAL FUNCTION USED TO LOCATE ONE SUBSTRING WITHIN
ANOTHER, IT HAS THE FOLLOWING CALLING SEQUENCE:

LOG = LSUB$A(A,ALEN,AFC, ALC,B,BLEN,BFC,BLC,FCP,LCP)
CALL tSUB$ACA,ALEN,AFC,ALC,B,BLEN,BFC,BLC,FCP,LCP)

ARGUMENTS :

A = ARRAY CONTAINING SUBSTRING TO BE LOCATED, PACKED TWO
CHARACTERS PER WORD, '

ALEN = LENGTH OF A, IN CHARACTERS, MUST BE .GE. ZERO,

AFC = FIRST CHARACTER POSITION OF SUBSTRING IN A,

ALC = LAST CHARACTER POSITION OF SUBSTRING IN A,

B = ARRAY CONTAINING SUBSTRING TO BE SEARCHED, PACKED TWo
CHARACTERS PER WORD,

BLEN = LENGTH OF B, IN CHARACTERS, MUST BE .GE. ZERO,

BFC = FIRST CHARACTER POSITION OF SUBSTRING IN B,

BLC = LAST CHARACTER POSITION OF SUBSTRING IN B,

FCP = FIRST CHARACTER POSITION IN B OF SUBSTRING THAT MATCHES
SUBSTRING IN A,

LCP = LAST CHARACTER POSITION IN B OF SUBSTRING THAT MATCHES
SUBSTRING IN A.

FUNCTION:

LSUBSA WILL SEARCH THE SUBSTRING CONTAINED IN B FOR THE FIRST
OCCURENCE OF THE SUBSTRING CONTAINED IN A. IF A MATCH IS FOUND FCP

AND LCP WILL BE EQUAL TO THE CHARACTER POSITIONS IN B OF THE
MATCHING SUBSTRING AND THE FUNCTION WILL BE TRUE. IF A MATCHING
SUBSTRING CANNOT BE FOUND OR IF EITHER SUBSTRING IS NULL (IE.

LENGTH EQUAL TO ZERO) THE FUNCTION WILL BE FALSE AND FCP AND LCP
WILL BE EQUAL TO ZERO.
THIS RQUTINE CHECKS THE VALIDITY OF THE STRING SUBSCRIPTS AND

WILL DISPLAY AN ERROR MESSAGE IF AN ILLEGAL SUBSCRIPT Is
ENCOUNTERED, A SUBSCRIPT MUST BE GREATER THAN ZERO (UNLESS BOTH
ARE ZERO, IN WHICH CASE THE SUBSTRING IS NULL) AND THE SECOND

SUBSCRIPT MUST BE GREATER THAN OR EQUAL TO THE FIRST. BOTH
SUBSCRIPTS MUST BE LESS THAN OR EQUAHE STRING LENGTH.

ALL ARGUMENTS ARE INTEGER%*2 EXCEPT A AND B WHOSE TYPES DO NOT
MATTER.

APPLIB CALLS:

CSUBgA

PAGE 34 REV. 2

JSTRSA

—— = —

JSTR$A IS A LOGICAL FUNCTION USED TO LEFT OR RIGHT JUSTIFY A STRING, IT
HAS THE FOLLOWING CALLING SEQUENCE:

LOG = JSTRS$A(KEY,STRING,LENGTH)
CALL JSTRSA(KEY,STRING,LENGTH)

ARGUMENTS ¢
KEY = DETERMINES DIRECTION OF JUSTIFICATION, POSSIBLE VALUES
ARE:
ASRGHT - RIGHT JUSTIFY,
ASLEFT - LEFT JUSTIFY,
STRING = STRING TO BE JUSTIFIED, PACKED TWO CHARACTERS PER WORD,
LENGTH = LENGTH OF STRING IN CHARACTERS, MUST BE .GE. ZERO.
FUNCTION:

JSTR$SA WILL LEFT OR RIGHT JUSTIFIY A STRING WITHIN ITSELF. THE

FUNCTION WILL BE TRUE IF JUSTIFICATION IS SUCCESSFUL, FALSE IF THE
STRING LENGTH 1S LESS THAN ZERO OR IF A BAD KEY IS USED.

ALL ARGUMENTS ARE INTEGER*2 EXCEPT STRING WHOSE TPYE DOES NOT
MATTER.

APPLIB CALLS:

NLEN$A, FILL3A, MSUBSA, GCHR%A

PAGE 35 REV. 2

4.3 USER QUERY

YSNOSA

YSNOSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= YSNOSA(MSG, MSGLEN,DEFKEY)

WHERE MSG = MESSAGE TEXT
MSGLEN MESSAGE LENGTH IN CHARACTERS

DEFKEY ASNDEF, NO DEFAULT ACCEPTED
ASDNO , DEFAULT = "NO" (.FALSE.)
ASDYES, DEFAULT = "YES" (.TRUE.)

MSGLEN AND DEFKEY ARE INTEGER*Z2. THE TYPE OF MSG DOESN'T
MATTER.

THIS ROUTINE WILL PRINT THE SUPPLIED MESSAGE AND APPEND THE
CHARACTERS "? " TO I1T. IT THEN READS A USER RESPONSE. IF THE

ANSWER IS "YES" OR "OK", THE FUNCTION VALUE IS .TRUE.. TIF THE
ANSWER IS "nO", THE FUNCTION VALUE IS L FALSE.. IF AN ILLEGAL
ANSWER IS PROVIDED OR IF NO DEFAULT 1S ACCEPTED, MSG WILL BE

REPEATED.

NOTE, USER RESPONSES MAY BE ABBREVIATED 70 FIRST 1 OR 2

CHARACTERS.

RNAMSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= RNAMSA(MSG,MSGLEN,NAMKEY ,NAME ,NAML EN)

WHERE MSG = MESSAGE TEXT
MSGLEN = MESSAGE LENGTH IN CHARACTERS
NAMKEY = ASFUPP, FORCE UPPER CASE (.NE. ASUPLW OR ASRAWI)
ASUPLW, DO NOT FORCE UPPER CASE
ASRAWI, READ REST OF LINE
NAME = RETURNED NAME
NAMLEN = LENGTH OF NAME BUFFER IN CHARACTERS (.LE. 80)

ALL ARGUMENTS ARE INTEGER*2 EXCEPT MSG AND NAME WHICH DON'T

MATTER.

THIS ROUTINE FILLS NAME WITH BLANKS AND THEN PRINTS THE

SUPPLIED MESSAGE AND APPENDS THE CHARACTERS ": "™ TO IT. IT THEN
READS A USER RESPONSE. IF THE RESPONSE IS NOT A LEGAL NAME OR IF
THE NAME PROVIDED IS TOO LONG FOR THE SUPPLIED BUFFER, THE ERROR

WILL BE REPORTED AND MSG WILL BFE REPEATED. IF NO NAME 1S PROVIDED,
THE VALUE OF THE FUNCTION WILL BE .FALSE.. IF A LEGAL NAME IS
PROVIDED, THE FUNCTION VALUE WILL BE .TRUE..

PAGE 36 REV. 2

RNUMSA

RNUMSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= RNUMSA(MSG , MSGLEN,NUMKEY , VALUE)

WHERE MSG = MESSAGE TEXT
MSGLEN = MESSAGE LENGTH IN CHARACTERS
NUMKEY = A$DEC, DECIMAL (.NE. ASOCT OR ASHEX)
A30CT, OCTAL
ASHEX, HEXADECIMAL
VALUE = RETURNED VALUE

ALL ARGUMENTS ARE INTEGER*2 EXCEPT VALUE WHICH IS
INTEGER*4L,

THIS ROUTINE WILL PRINT THE SUPPLIED MESSAGE AND APPEND THE
CHARACTERS ": " TO X¥T. IT THEN READS A USER RESPONSE. IF THE

RESPONSE IS NOT A LEGAL NUMBER OR IF THE NUMBER PROVIDED HAS TO0O
MANY DIGITS FOR AN INTEGER*4 VALUE, THE ERROR WILL BE REPORTED AND
MSG WILL BE REPEATED. IF NO NUMBER IS PROVIDED, THE VALUE OF THE

FUNCTION WILL BE .FALSE. AND VALUE=QO. IF A LEGAL NUMBER IS
PROVIDED, THE FUNCTION VALUE WILL BE .TRUE. AND THE VALUE WILL BE

RETURNED IN VALUE.

NOTE, NUMBERS MAY BF PRECEDED BY A "+" QR "-'.

PAGE 37 REV. 2

4.4 SYSTEM INFORMATION

TIMESA

TIMESA IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING
SEQUENCE:

R*8= TIMESA(TIME)
CALL TIMESACTIME)

WHERE TIME = TIME OF DAY IN THE FORM "HR:MN:SC"

THE TYFE OF THE TIME ARRAY DOES NOT MATTER AS LONG AS IT IS
AT LEAST 8 CHARACTERS LONG.

THIS ROUTINE RETURNS THE TIME OF DAY IN THE FORM
"HR :MN:5C".

THE VALUE OF THE FUNCTION IS THE TIME OF DAY IN DECIMAL HOURS.
THIS VALUE MAY BE RECEIVED AS EITHER REAL*4 QR REAL*8.

CTImsA

CTIMSA IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING
SEQUENCE:.

R*8= CTIMS$SA(CPUTIM)
CALL CTIM$SACCPUTIM)

WHERE CPUTIM = CPU TIME iN CENTISECONDS

CPUTIM IS INTEGER*4.

THIS ROUTINE RETURNS CPU TIME SINCE LOGIN AS INTEGER*4
CENTISECONDS IN THE CPUTIM ARGUMENT.

THE FUNCTION VALUE WILL BE CPU TIME SINCE LOGIN IN SECONDS.
THIS VALUE MAY BE RECEIVED AS EITHER REAL*4 OR REAL*Z.

PAGE 38 REV. 2

DIIMSA

- o . .

DTIM$A IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING

SEQUENCE:

R*8= DTIMSACDSKTINM)

CALL DTIMSA(DSKTIM)

WHERE DSKTIM = DSK TIME IN CENTISECONDS

DSKTIM IS INTEGER*4.

THIS ROUTINE RETURNS DISK TIME SINCE LOGIN AS INTEGER*4
CENTISECONDS IN THE DSKTIM ARGUMENT.

THE FUNCTION VALUE WILL BE DISK TIME SINCE LOGIN IN SECONDS.
THIS VALUE MAY BE RECEIVED AS EITHER REAL*4 OR REAL*8.

DATEEA

DATESA IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING
SEQUENCE:

R¥&= DATESA(DATE)
CALL DATESA(DATE)

WHERE DATE = DATE IN THE FORM "DAY, MON DD 19YR"

THE TYPE OF THE DATE ARRAY DOES NOT MATTER AS LONG AS IT IS
AT LEAST 16 CHARACTERS LONG.

THIS ROUTINE RETURNS THE DATE IN THE FORM "DAY, MON DD
19YR".

THE VALUE OF THE FUNCTION IS THE DATE IN THE FORM "MM/DD/YR".
THIS VALUE MUST BE RECEIVED AS REAL*&.

NOTE THAT THIS ROUTINE IS 600D FOR THE PERIOD JANUARY 1, 1977
THROQUGH DECEMBER 31, 1986.

FAGE 39 REV. 2

EDATSA

EDAT$A IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING

SEQUENCE:

R*3= EDATSA(CEDATE)

CALL EDATSA(EDATE)

WHERE EDATE = DATE IN THE FORM "DAY, DD MON 19YR"

THE TYPE OF THE EDATE ARRAY DOES NOT MATTER AS LONG AS IT
IS AT LEAST 16 CHARACTERS LONG. ‘

THIS ROUTINE RETURNS THE DATE IN THE EUROPEAN (MILITARY) FORM
"DAY, DD MON 19YR".

THE VALUE OF THE FUNCTION IS THE DATE IN THE FORM "DD/MM/YR".
THIS VALUE MUST BE RECEIVED AS REAL*8,

NOTE THAT THIS ROUTINE IS GOOD FOR THE PERIOD 1 JANUARY 1977
THROUGH 31 DECEMBER 1986.

DOFYSA

DOFY$A 1S A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING

SEQUENCE:

R*8= DOFYSA(DOFY)

CALL DOFYSA(DOFY)

WHERE DOFY = DAY OF YEAR IN THE FORK "DDD "

THE TYPE OF THE DOFY ARRAY DOES NOT MATTER AS LONG AS IT IS
AT LEAST 4 CHARACTERS LONG.

THIS ROUTINF RETURNS THE DAY OF THE YEAR IN THE FORH
IIDDD ll.

THE VALUE OF THE FUNCTION IS THE DATE 1IN THE FORM YR.DDD
SUITABLE FOR PRINTING IN FORMAT F6.3. THIS VALUE CAN BE RECEIVED

AS EITHER REAL*4 OR REAL*8.

NOTE THAT THIS ROUTINE IS GOOD FOR THE PERIOD JANUARY 1, 1977

THROUGH DECEMBER 31, 1986.

PAGE 40 REV. 2

4.5 MATHEMATICAL

RNDISA

RNDI$A IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING
SEQUENCE:

R*8= RNDISA(SEED)
CALL RNDISA(SEED)

WHERE SEED = TIME OF DAY IN CENTISECONDS

SEED IS INTEGER*4.

THIS ROUTINE RETURNS THE TIME OF DAY IN CENTISECONDS. THE

FUNCTION VALUE WILL BE THE TIME OF DAY IN SECONDS. THIS VALUE MAY
BE RECEIVED AS EITHER REAL*4 OR REAL*8.

NOTE, BECAUSE THIS FUNCTION IS USED TO INITIALIZE A RANDOM
NUMBER GENERATOR, IF THE VALUE IS EXACTLY 0, 1234567 OR 12345.67
WILL BE RETURNED INSTEAD.

PAGE 41 REV. 2

RANDSA

RAND$A IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING

SEQUENCE:

R*x8= RANDSA(SEED)

CALL RANDSA(SEED)

WHERE SEED = INPUT IS PREVIOUS SEED, OQUTPUT IS NEW SEED

SEED IS INTEGER*4.

THIS ROUTINE UPDATES A SEED TO & NEW SEED (SEED) BASED UPON
THE LINEAR CONGRUENTIAL METHOD:

UCI)=FLOAT(K(I1))/H

WHERE K(I) = B*K(I-1) MODULO H
B = 16807.0
M = 2**31-1 = 2147483647.7

B AND M ARE FROM: LEWIS, GOODMAN, AND MILLER, "A PSEUDO~RANDOM
NUMRER GENERATOR FOR THE SYSTEM/360", IBM SYSTEMS JOURNAL, VOL 38,
NO 2, 1969, PP 136-145.

K(I-1) IS THE INPUT VALUE OF SEED AND K(I) 1S THE RETURNED
VALUE.

THE VALUE OF THE FUNCTION IS U(I) WHICH REPRESENTS A
PROBABILITY AND IS BETWEEN 0.0 AND 1.0. THIS VALUE MAY BE RECEIVED

AS EITHER REAL*4 OR REAL*8.

PAGE 42 REV. 2 -

4.6 CONVERSION

ENCD2A

ENCDSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= ENCD$ACARRAY,WIDTH,DEC,VALUE)
CALL ENCDS$ACARRAY,WIDTH,DEC,VALUE)

WHERE ARRAY = ARRAY TO0 RECEIVE VALUE
WIDTH = FIELD WIDTH AS IN FORMAT FW.D (SHOULD BE EVEN)
DEC PLACES TO RIGHT OF DECIMAL PT. AS IN FORMAT FW.D

VALUF DOUBLE PRECISION VALUE TO BE ENCODED

WIDTH AND DEFC ARE IKTEGER*Z2, VALUE IS REAL*8, AND THE TYPE

OF ARRAY DOESN'T MATTEK.

THIS ROUTINE WILL ATTEMPT TO ENCODE VALUE IN THE SUPPLIED FW.D

FORMAT IF IT WILL FIT. IF NOT, THE DEC ARGUMENT IS DECREMENTED
(MOVING THE DECIMAL POINT TO THE RIGHT) UNTIL IT WILL FIT. IF DEC
REACHES 0, OR IS ORIGINALLY SUPPLIED AS O, VALUE WILL BE ENCODED IN

IW FORMAT IF THE NUMBER WILL FIT INTO A 32-BIT INTEGER. IF NOT,
AND IF THE FIELD IS WIDE ENOUGH (WIDTH > 7), THE VALUE WILL BE
ENCODED IN E FORMAT. IF THE FIELD IS NOT WIDE ENOUGH, IT WILL BE

FILLED WITH ASTERISKS.

NOTE THAT THE LARGEST VALUE OF WIDTH WILL BE 16. IF IT IS

LARGER THAN 16, ONLY THE FIRST 16 CHARACTERS OF ARRAY WILL BE USED.

THE FUNCTION VALUE WILL BE .TRUE. TIF THE ENCODE WAS SUCCESSFUL

AND .FALSE. IF THE FIELD WAS FILLED WITH ASTERISKS.

NOTE THAT ARRAY IS THE ONLY ARGUMENT WHICH IS ACTUALLY MODIFIED

IN THE CALLING PROGRAWM.

PAGE 43 REV. 2

CNVASA

CNVASA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= CNVASA(NUMKEY,NAME NAMLEN,VALUE)
CALL CNVASA(NUMKEY, NAME NAMLEN,VALUE)

WHERE NUMKEY = A$DEC, DECIMAL (.NE. ASOCT OR ASHEX)
A$0CT, OCTAL

ASHEYX, HEXADECIMAL

NAME = ASCII NUMBER STRING
NAMLEN = LENGTH OF NAME IN CHARACTERS
VALUE = RETURNED VALUE

NUMKEY AND NAMLEN ARE INTEEER*2, VALUE IS INTEGER*4, AND

THE TYPE OF NAME DOESN'T MATTER.

THIS ROUTINF WILL CONVERT AN ASCII DIGIT STRING INTO ITS BINARY

VALUE FOR DECIMAL, OCTAL AND HEXADECIMAL NUMBERS. THE NUMBERS MAY
BE EXPLICITLY SIGNED. LEADING AND TRAILING BLANKS ARE IGNORED AS
WELL AS BLANKS BETWEEN THE SIGN AND THE NUMBER. HOWEVER, BLANKS

WITHIN THE NUMBER ARE NOT ALLOWED. IF THE NUMBER CONVERTS
SUCCESSFULLY, THE FUNCTION IS .TRUE. AND IF NOT, IT IS .FALSE.
AND VALUE=0. NOTE THAT FOR DECIMAL CONVERSIONS, OVERFLOW WILL BE

CONSIDERED AS UNSUCCESSFUL WHEREAS FOR OCTAL AND HEXADECIMAL
CONVERSIONS, OVERFLOW IS IGNORED.

PAGF L4 REV. 2

CNVBSA

CNVB$A IS AN INTEGER FUNCTION USED TO CONVERT A BINARY NUMBER TO AN
ASCII DIGIT STRING, IT HAS THE FOLLOWING CALLING SEQUENCE:

I1*2 = CNVBSA(NUMKEY,VALUE ,NAME,NAMLEN)

ARGUMENTS :

NUMKEY = NUMBER BASE TO CONVERT 70, POSSIBLE VALUES ARE:
ASDEC - SIGNED DECIMAL NUMBER WITH LEADING BLANKS,
A$DECU - UNSIGNED DECIMAL NUMBER 4 ITH LEADING BLANKS,

A$DECZ - SIGNED DECIMAL NUMBER WITH LEADING ZEROS,
A30OCT - SIGNED OCTAL NUMBER, LEADING BLANKS
A$0CTZ - SIGNED OCTAL, LEADING ZEROS,

ASHEX - SIGNED HEXADECIMAL, LEADING BLANKS,
ASHEXZ - SIGNED HEXADECIMAL, LEADING ZEROS.
NAME = RETURNED STRING FOR ASCII NUMBER.

NAMLEN = LENGTH OF NAME IN CHARACTERS.
VALUE = INTEGER*4 BINARY NUMBER TQO BE CONVERTED.
FUNCTION:

CNV3$A WILL CONVERT A BINARY NUMBER INTO AN ASCII DIGIT STRING
FOR DECIMAL, OCTAL, AND HEXADECIMAL NUMBERS. THE RETURNED DIGIT
STRING WILL BE RIGHT JUSTIFIED IN NAME AND PRECEDED BY LEADING

o o e o

BLANKS QR ZEROS.
IF VALUE IS NEGATIVE AND TO BE TREATED AS SIGNED DECIMAL, NARME
WILL BEGIN WITH AN INITIAL "-" SIGN. IF THE NUMBER CONVERTS

SUCCESSFULLY, THE FUNCTION VALUE IS THE NUMBER OF DIGITS AND IF
NOT, IT IS ZERO.

ALL ARGUMENTS ARE INTEGER*2 EXCEPT VALUE, WHICH IS INTEGER%4,
AND NAME, WHOSE TYPE DOES NOT MATTER.

APPLIE CALLS:

FILLSA, MCHRSA

PAGE 45 REV.

2

b.73P

ARSING

¢

MDLEA

CMDLS$A IS A LOGICAL FUNCTION

HAS THE FOLLOWING CALLING SEGUENCE:

FOR PARSING A PRIMOS TYPE COMMAND LINE AND

LOG =
CALL

CYDLSACKEY,KWLIST, KWINDX,OPTBUF,BUFLEN,OPTION,VALUE ,KWINFO)
CMDL$A(KEY,KWLIST, KWINDX,OPTEUF,BUFLEN,OPTION,VALUE, KWINFO)

REUMENTS

KEY

ASNEXT, CALL COMANL TO GET THE NEXT COMMAND LINE, TURN

ASREAD, RETURN THE NEXT KEYWORD ENTRY IN THE COMMAND LINE.
ON

DEFAULT PROCESSING, AND RETURN THE FIRST KEYWORD ENTRY IN

THE NEW COMMAND LINFE

ASRSET, RESET THE COMMAND LINE POINTER TO THE BEGINNING OF

THE COMMAND LINE AND TURN ON DEFAULT PROCESSING. USE
THIS KEY DOES NOT RETURN A KEYWORD ENTRY.

= ASRAWI, RETURN THE REMAINDER OF THE COMMAND LINE AS RAW

OF

TEXT AND TURN ON THE END OF LINE INDICATOR. TEXT STARTS
AT THE TOKEN FOLLOWING THE CPTION (IF PRESENT) OF THE LAST

KEYWORD ENTRY READ.

= ASMKWL, TURN ON DEFAULT PROCESSING AND RETURN THE NEXT

KEYWORD ENTRY IN THE COMMAND LINE. THIS KEY ALLOWS THE

CALLING PROGRA&M TO SWITCH KEYWORD LISTS IN THE MIDDLE OF A

KWLIST

COMMAND LINE.

= A ONE DIMENSIONAL ARRAY CONTAINING CONTROL INFORMATION, A

TABLE OF KEYWORD EMTRY DESCRIPTIONS, AND A LIST OF DEFAULT

KEYWORDS. SEE SECTION TITLED KWLIST_FORMAT FOR A COMPLETE

DESCRIPTION.

KWINDX

KEYWORD IN A KEYWORD ENTRY, POSSIBLE VALUES ARE:

KEYWORD INDEX, RETURNED INTEGER VARIABLE IDENTIFYING THE

< 0, UNRECOGNIZED KEYWORD OR CMDL$A WAS CALLED WITH A KEY OF

ASRSET OR A$RAWI.

= 0, END OF LINE.
> 0, VALID KEYWORD.

OPTRBUF

= PACKED ARRAY THAT NORMALLY CONTAINS THE TEXT OF A KEYWORD
OPTION, HOWEVER IF AN UNRECOGNIZED KEYWORD IS ENCOUNTERED

OPTBUF CONTAINS THE TEXT OF THAT KFYWORD.

BUFLEN

= SPECIFIED LENGTH OF OPTBUF IN CHARACTERS, MUST BE .GE.

ZERO.

OPTION

= OPTION TYPE, RETURNED INTEGER VARIABLE THAT DESCRIBES THE

OPTION FOLLOWING A KEYWORD, POSSIBLE VALUES ARE:

= ASNONE, NO OPTION, OR OPTION WAS NULL, OPTBUF WILL BE

PAGE 46 REV. 2

BLANK.

ASNAME, OPTION WAS A NAME
ASNUMB, OPTION WAS A NUMBER, RESULTS OF NUMERIC CONVERSION
RETURNED IN VALUE.

ASNOVF, OPTION WAS A NUMBER AND CONVERSION RESULTED IN
OVERFLOW (DECIMAL NUMBERS ONLY).

VALUE

RETURNED INTEGER*4 VARIABLE EQUAL TO THE BINARY VALUE OF
AN OPTION IF IT WAS A NUMBER, ZERO OTHERWISE.

KWINFO

AN ARRAY THAT RETURNS MISCELLANEOQUS INFORMATION AND MUST
BE DIMENSIONED KWINFO(10) IN THE CALLING PROGRAM.
KWINFO(1) IS EQUAL TO THE NUMBER OF CHARACTERS IN OPTBUF

AND KWINFO(2) - KWINFO(10) ARE RESERVED FOR FUTURE USE.

FAGE 47 REV. 2

FUNCTION

CMDLSA WAS DESIGNED TO SIMPLIFY THE PROCESSING OF A PRIMOS TYPE
COMMAND LINE WHILE, AT THE SAME TIME, PROVIDING THE USER WITH A GREAT

DEAL OF FLEXIBILITY IN DEFINING HIS COMMAND ENVIRONMENT.

TH1S ROUTINE WILL PARSE A COMMAND LINE, A KEYWORD ENTRY AT A TINME,

AND RETURN INFORMATION ABOUT EACH EACH ENTRY IT ENCOUNTERS. A KEYWORD
ENTRY IS5 DEFINED AS A -KEYWORD FOLLOWED BY AN OPTION. A DEFAULT

KEY®WORD ENTRY IS DEFINED AS AN OPTION THAT IS NOT PRECEDED BY A

-KEYWORD BUT, BRY VIRTUE OF ITS POSITION IN THE COMMAND LINE, IMPLIES A
SPECIFIED <-KEYWORD (EG. FTN SNARF, WHFRE SNARF IMPLIES THE DEFAULT
KEYWORD -INPUT). DEFAULTS MAY ONLY OCCUR AT THE BEGINNING OF A COMMAND

LINE.

CMDL$A RETURNS THE FOLLOWING INFORMATION FOR EACH KFYWORD ENTRY IN

THE COMEAND LINE:

1) INTEGER THAT IDENTIFIES THE -KEYWORD (KWINDX).

2) TEXT OF THE KEYWORD OPTION, IF PRESENT (OPTBUF).
3) OPTION TYPE (OPTION).
4) RESULTS OF NUMERIC CONVERSION, IF OPTION WAS A NUMBER (VALUE).

5) NUMBER OF CHARACTERS IN THE TEXT OF AN OPTION (KWINFO(1)).

NOTF THAT CMDL3A DOES NOT PERFORM ANY ACTION OTHER THAN

RETURMING INFORMATION ARQUT THE COMMAND LINE.

THE FOLLOWING IS A LIST OF CONSIDERATIONS THAT SHOULD BE TAKEN

INTO ACCOUNT WHEN DEFINING A COMMAND ENVIRONMENT:

1) A KEYWORD MAY HAVE, AT MOST, ONE OPTION FOLLOWING IT.

2) A KEYWORD MUST BEGIN WITH A t=t,
3) A KEYWORD MAY NOT BE A DECIMAL NUMBER (EG. =99).
4) REGISTER SETTING PARAMETERS ARE NOT RECOGNIZED AS SUCH.

5) DEFAULT KEYWORDS ARE ONLY ALLOWED AT THE BEGINNING OF A
COMMAND LINE, THE FIRST ~KEYWORD ENCOUNTERED TURNS OFF
DEFAULT PROCESSING AND ALL REMAINING OPTIONS ON THE COMMAND

LINE MUST BE PRECEDED BY A =-KEYWORD (THIS RESTRICTION CAN
BE CIRCUMVENTED BY USING A KEY OF ASNKWL, HOWEVER THE USER
MUST BE AWARE OF THFE FACT THAT WHEN DEFAULT PROCESSING IS

IN EFFECT EACH OPTION 1S TREATED AS IF IT WERE PRECEDED BY
A -KEYWORD).
6) A KEY OF A$RAWI (OR AN OPTION TYPE OF ASRAWI) WILL TURN ON

THE END OF LINE INDICATOR AND ANY FURTHER ATTEMPTS TO READ
FROM THE CURRENT COFMMAND LINE WILL RETURN AN END OF LINE
CONDITION. TO TURN OFF THE END OF LINE INDICATOR CHMDLSA

MUST BE CALLED WITH A KEY OF ASRSET OR ASNEXT.
7) A BUFFER LENGTH THAT IS TO SMALL TO CONTAIN THE TEXT OF AN
OPTION WILL CAUSE THAT OPTION TO BE TRUNCATED AND AN ERROR

MESSAGE TO BE DISPLAYED.
8) DEFAULT KEYWORD ENTRIES THAT HAVE A NUMERIC OPTION SHOULD
BE AVOIDED AS PRIMOS M™MAY INTERCEPT THEM AS REGISTER

SETTINGS.
9) A NEGATIVE HEXADECIMAL OPTION THAT CONSISTS OF ONLY

FAGE 48 REV. 2

ALPHABETIC CHARACTERS (EG. =FF) WILL ALWAYS BE INTERPRETED

AS & -KEYWORD.
10) KEYWORD ENTRIES IN THE KEYWORD TABLE WITH THE SAME KEYWORD
INDICIES ARE CONSIDERED SYNONYMS. A KEYWORD MAY HAVE ANY

NUMBER OF SYNONYMS, EACH HAVING DIFFERENT OPTION
SPECIFICATIONS. HOWEVER, IF A KEYWORD WITH SYNONYMS IS
ALSO A DEFAULT AND DEFAULT PROCESSING IS IN EFFECT, THE

OPTION SPECIFICATIONS FOR THE SYNONYMS wILL BE IGNORED (IE.
A DEFAULT KEYWORD OPTION ALWAYS IMPLIES THE FIRST KEYWORD
IN A SYNONYW CHAIN).

11) NULL ENTRIES IN THE COMMAND LINE ARE ONLY PERMITTED FOR
KEYWORDS THAT HAVE AN OPTION STATUS OF ASQPTL, ALL OTHER
NULL ENTRIES WILL BE TREATED AS EITHER A MISSING OPTION OR

AN UNRECOGNIZED KEYWORD.
12> CALLS TO CMDL$A AND RDTKS$S ON THE SAME COMMAND LINE SHOULD
BE AVOIDED, AS CMDL$A USES RDTK$$ TO PERFGRM A LOOK-AHEAD

WHEN A -KEYWORD IS ENCOUNTERED.
13) ALL TEXT IS FORCED TO UPPER CASE UNLESS ENCLOSED IN QUOTES
OR READ AS RAW TEXT (ASRAWI).

ALL ARGUMENTS ARE INTEGER*2 EXCEPT VALUE, WHICH IS INTEGER*4, AND
OPTRUF WHOSE TYPE DOES NOT MATTER.

APPLIB CALLS:

CNVASA, CNVB$SA, CSUR$A, FILL$A, JSTR$A, MSUB3A, MSTR®A, NLENS$A,
TYPESA

FAGE 49 REV. 2

KWLIST FORMAT

THE KWLIST ARRAY CONSISTS OF THREE SECTIONS, THE FIRST SECTION
CONTAINS CONTROL INFORMATION, THE SECOND CONTAINS THE KEYWORD ENTRY

TABLE, AND THE THIRD CONTAINS THE DEFAULT LIST.

CONTROL INFORMATION:

WORD 1 - NUMBER OF KEYWORD ENTRIES IN TABLE, MUST BE .GT.
2ERO.

WORD 2 - MAXIMUM LENGTH OF KEYWORD TEXT IN CHARACTERS, MUST BE
.GE. 2 AND .LE. 80. ALL KEYWORDS MUST HAVE THE SAWME
LENGTH THEREFORE IT MAY BE NECESSARY TO PAD THEM WITH

BLANKS.

KEYWORD TARLE:

WORDS 1 TO N - TEXT OF KEYWORD, THE ACTUAL NUMBER OF CHARACTERS
MUST BF EGQUAL TO THE MAXIMUM KEYWORD LENGTH.

WORD N+1 - KEYWORD INDEX, MUST BE .GT. ZERO.
WORD N+7 = MINIMUM NUMEBLR OF CHARACTERS IN THE KEYWORD TO
MATCH, MUST BE .GE. 2 AND JLE. MAXIMUM KEYWORD

LENGTH. A VALUE THAT 1S ZERO OR NEGATIVE CAUSES THE
KEYWORD TO BE IGNORED «wHEN THE TABLE IS SEARCHED.
THIS ALLOWS KEYWORD TEXT TO EXIST AS DOCUMENTATION.

WORD N+3 - OPTION STATUS, POSSIBLE VALUES ARE:
ASMONE, NO OPTION MAY FOLLOW KEYWORD
AsOPTL, OPTION MAY OR MAY NOT FOLLOW KEYWORD

ASREGQD, OPTION MUST FOLLOW KEYWORD.
WORD N+4 - OPTION TYPE, POSSIBLE VALUES ARE:
ASNONE, IF STATUS IS ASNONE

ASDEC, OPTION MUST BE A DECIMAL NUMBER
A30CT, OPTION MUST BE AN OCTAL NUMBER
ASHEX, OPTION mMUST RE A HEXADECIMAL NUMBER

ASNAME, OPTION MUST BE A NAME
ASNDEC, OPTION MAY BE A NAME OR A DECIMAL NUMBER
ASNOCT, OPTION MAY BE A NAME OR AN OCTAL NUMBER

AENHEX, OPTION MAY BE A NAME OR A HEXADECIMAL NUMBER
(IF THE OPTION CONSISTS Of ALL ALPHABETIC CHARACTERS,
EG. FACE, THAT ALSO CONSTITUTE A VALID HEXADECIMAL

NUMBER THEN IT WILL BE INTERPRETED AS SUCH)
ASRAWI, OPTION IS THE REMAINDER OF THE COMMAND LINE
AFTER THE CURRENT -KEYWORD READ AS RAW TEXT. USE OF

THIS OPTION TYPE WILL TURN ON THE END OF LINE
INDICATOR IN THE SAME MANNER AS A KEY OF ASRAWI.

PAGE 50 REV. 2

DEFAULT LIST:

WORD 1 = NUMBER OF DEFAULT KEYWORDS, MUST BE .GE. ZERO
WORDS 2 TO N - (WHERE N IS EQUAL TO WORD 1) LIST OF KEYWORD

INDICIES PREVIOUSLY DEFINED IN THE KEYWORD ENTRY
TABLE, THAT WILL BE USED WHEN DEFAULT PROCESSING IS IN

EFFECT. A DEFAULT KEYWORD ENTRY MAY NOT HAVE AN

OPTION STATUS OF ASNONE.

PAGE 51 REV. 2

ERROR _MESSAGES

THE FUNCTION VALUE WILL BE FALSE IF ANY CF THE FOLLOWING ERRORS
OCCUR:

BAD KEY.
BUFFER LENGTH LESS THAN ZERO.

NAME TO LOMG. (NAME TEXT)
UNRECOGNIZED KEYWORD. (KEYWORD TEXT)
BAD KEYWORD OPTION. (OPTION TEXT)

MISSING KEYWORD OPTION.
NO. OF KEYWORD ENTRIES MUST BE .6T. ZERO.
MAX KEYWORD LENGTH MUST BE .6FE. 2 AND .LE. &0.

1ST CHARACTER OF KEYWORD MUST BE '='. (KEYWORD TEXT)
KEYWORD MAY NOT BE A NUMBER. (KEYWORD TEXT)
KEYWORD INDEX MUST BE ,6T. ZERO. (KEYWORD TEXT)

MIN CHARACTERS TO MATCH MUST BE .LE. MAX KEYWORD LENGTH.
(KEYWORD TEXT)
INVALID OPTION STATUS. (KEYWORD TEXT)

INVALID OPTION TYPE. (KEYWORD TEXT)
NO. OF DEFAULTS MUST BE .GE. ZERO.
DEFAULT NOT DEFINED IN KEYWORD LIST. (DEFAULT INDEX)

INVALID DEFAULT OPTION STATUS. (KEYWORD TEXT)
MIN CHARACTERS TO MATCH MUST BE .GE. 2. (KEYWORD TEXT)
UNDETERMINED ERROR. (TEXT OF LAST KEYWORD OR OPTION READ)

PAGE 52 REV. 2

SAMPLE_PROGRAM

C TEST PROGRAM FOR CMDLSA

IMPLICIT INTEGER*Z2 (A-7)
INTEGER*4 VALUE

DIMENSION BUFFER(10),KWLIST(128),INFOCT10)
$INSERT SYSCOM>ASKEYS

C
DATA KWLIST 711,14,
x VHANY TEXT ' ,1,0,ASREQD,ASDEC,
* '-NDECIMAL v,2,2,AS0PTL,ASNDEC,
* T=0CTAL 7,4 ,2 ,ASREGD,ASNONE,
* '=-NOCTAL ', 4,3,A$0PTL, ASNOCT,
* '-HEXADECIMAL *,5,2,ASREQD,ASHEX,
* '-NHEXADECIMAL ',6,3,AS0PTL,ASNHEX,
* Y=NAME *,7,5,ASREQD, ASNAME,
* '-MAYBE ',8,6,AS0PTL, ASNANE,
* T=NONE v,9,5,ASNONE, ASNONE,
* V-QUIT ',10,2,ASNONE, ASNONE,
* '=TITLE ',69,2,A50PTL ,ASRAWI,
* 4,1,2,8,77
C
C
BUFLEN = 20
KEY = ASREAD
10 IF (CMDLSACKEY,KWLIST,KWINDX,BUFFER,BUFLEN,TYPE,VALUE,INFO0))
* €0 70 15
PRINT 99
99 FORMAT(/'TRY AGAIN, TURKEY !')
CALL EXIT
15 TF (KWINDX.EQ.10) CALL EXIT
IF (KWINDX.NE.ASNONE) 60 TO 20
KEY = ASNEXT
G0 TO 10
20 KEY = ASREAD
PRINT 100 BUFFER,KWINDX,TYPE,VALUE,INFO (1)
100 FORMAT(/TUA2/*KWINDX TYPE VALUE CHARS 'Y /2X 4 (13,6X))
60 TO 10

END

PAGE 53 REV. 2

5 SUMMARY AND KEYS

BELOW 1S A BRIEF SUMMARY OF THE CALLING SEQUENCES FOR ALL THE APPLIB
ROUTINES AND A LISTING OF THE FILE SYSCOM>ASKEYS.

5.1 SUMMARY

IN THE SUMMARY THAT FOLLOWS, THE TYPE CODES ARE DEFINED AS:

L = LOGICAL
1 = INTEGER (SUBJECT TO COMPILE TIME OPTION)
I*¥2 = INTEGER=*?2)
R = REAL
DP = DOUBLE PRECISION
GROUP______ NAME__ IYPE ARGUNMENIS______________ -
FILE SYSTEM TEMPSA L {TYPKEY,NAME , NAMLEN,UNIT)
OPENSA L (OPNKEY+TYPKEY NAME,NAMLEN,UNIT)
OPNPSA L (MSG,MSGLEN,OPNKEY+TYPKEY ,NAME ,NAMLEN,
UNIT)
OPNVEA L (OPNKEY+TYPKEY , NAME, NAMLEN ,UNIT ,VERKEY,
WTIME,RETRYS)
OPVPSA L (MSG ,MSGLEN,OPNKEY+TYPKEY, NAME ,NAMLEN,
UNIT,VERKEY, WTIME,RETRYS)
CLOSSA L (UNIT)
RUNDSA L (UNIT)
GENDSA L (UNIT)
TRNCSA L (UNIT)
DELESA L (NAME _NAMLEN)
EXST$A L (NAME,NAMLEN)
UNITSA L (UNIT)
RPOSSA L (UNIT,PO0S)
POSNSA L (POSKEY,UNIT,POS)
TSCNSA L (KEY , UNITS,ENTRY ,MAXSIZ,ENTSIZ , MAXLEV,
LEV,CODE)
STRING FILLS$A I (NAME,NAMLEN, CHAR)
NLENSA I*x2 (NAME,NAMLEN)
MCHREA I (TARRAY,TCHAR,FARRAY ,FCHAR)
GCHRZA 1 (FARRAY ,FCHAR)
TREESA I (NAME,NAMLEN,FSTART,FLEN)
TYPESA L (KEY,STRING,LENGTH)
MSTRSA I (A,ALEN,B,BLEN)
MSUBS$A I (A,ALEN,AFC,ALC,B,BLEN,BFC,BLC)
CSTR%A L (A ALEN,B,BLEN)
CSUBS%A L (A, ALEN,AFC,ALC,B,BLEN,BFC,BLC)
LSTR$A L (A,ALEN,B,BLEN,FCP,LCP)
LSUB$A L (A,ALEN,AFC,ALC,B,BLEN,BFC,BLC,FCP,LCP)
JSTRS$A L (KEY,STRING,LENGTH)
USER QUERY YSNOSA L (MSG ,MSGLEN,DEFKEY)
RNAMSA L (MSG,MSGLEN,NAMKEY ,NAME , NAMLEN)
RNUMSA L (MSG,MSGLEN,NUMKEY ,VALUE)
INFORMATION TIMESA DP (TIME)

PAGE 54 REV. 2

CTIMSA DP (CPUTIM)
DTIMSA DP (DSKTIM)
DATESA DFP (DATE)
EDATSA DP (EDATE)
DOFYSA DP (DOFY)
MATHEMATICAL RNDISA DP (SEED)
RAND$A DP (SEED)
CONVERSION ENCD$A L (ARRAY ,WIDTH,DEC ,VALUE)
CNVASA L (NUMKEY, NAME,NAMLEN,VALUE)
CNVBSA I (NUMKEY, VALUE, NAME ,NAMLEN)
PARSING CMDLSA L (KEY KWLIST KWINDX,OPTBUF,BUFLEN,OPTION,

VALUE, KWINFO)

PAGE 55

REV.

S.2 SYSCOM>ASKEYS

FUNCTION DECLARATIONS (TABSET 6 17)

LOGICAL CLOS3A, RWNDSA,GENDEA,TRNCSA,DELESA RPOSSA, POSNSA,

X TEMPSA,OPENSA, OPNVSA , OPNPSA, OPVPSA,ENCDSA, YSNOSA,
X RNAMSA,RNUMSA, TREESA EXSTS$A,UNITSA,CNVAS A, CMDL $A,
X CSUBSA,CSTRSA,TYPESA , TSCNSA,JSTRSA,LSUBSA,LSTRSA

INTEGER MCHR$A,GCHR$A,FILLSA
INTEGER*Z NLFNS$A,MSUBSA,MSTRSA,CNVBSA

REAL *8 DOFY$SA,DATESA,EDATSA,TIMESA,CTIMSA,DTIMSA, RNDISA,RANDSA

KEY DECLARATIONS (TARSET 6 17)

INTEGER*Z2 AIREAD ,ASWRIT,ASRDWR,ASSAMF, ASDAMF, ASNVER,ASVNEW,

X ASOVAP,ASVOLD,ASABS LASREL ,A$SDEC L,ASOCT ,A3HEX ,
X ASNDEF ,A$DNO ,ASDYES ASFUPP,ASUPLW, ASRARI,
X A$NONE ,ASOPTL,ASREQD ,ASNDEC,ASNOCT, ASNHEX, ATNAME,
X ASNUMB ,ASNEXT,ASRSET ,ASNOVF,ASNKWL ,ASTREE, ASDLAY,
X ASNUFD ,ASNSEG,ASCUFD _, ASDECZ ,ASDECU,ASOCTZ, ASHEXZ,
X ASRGHT,ASLEFT ,AS$SBACK

PARAMETER
X
X Jhrkkhkhhkhkbkekhhhhohkhhhhkkhhhhhkhhhrhhh bk hhkhkhkhhkkhhhrhkkhkkhkhkhkdkk/
X_/* */
X /% */
X /* KEY DEFINITIONS (TABSET 6 11 28 69) */
X [* */
X /* */
X [hhkkhkhkdkkhkkhkhkhhkkkkkkx QPENIA *Addkddkkrhkhkrhhhhkkkk */
X [hikkkhkrkhkhkhkhkhkhkkhkkkdx OPNPFA *kkhkkhkrhkhkkdhhhh dk ki */
X Jhhhkkkhkrkkkkthbkhhhkkhr OPNVFTA *hkkdkhhkdhdkdrhhk ik x/
X [hkkkkkhkhhkkhhkhkhkikhkhkhkhhkhx QPVPSA *dkkhkhkhkhhkhdhkhhhkd kb *}
X [hhkdkkkkhkkhhkhkhkhkhhkhkhrkhkd TEMPIA *rxkhhdhdhrhhhhkhh kkdhkh *x/
X /* kkkkxkkk QOPNKFY *kkkk%* */
X ASREAD = 1, /* READ */
X ASWRIT = 2, /* WRITE */
X A$SRDWR = 3, /* READ/WRITE *x/
X /* kxkkkkk TYPKEY *xkkdk *]
X ASSAMF = O, /* OPEN NEW SAM FILE */
X ASDANF = :2000, /* OPEN NEW DAM FILE */
X /% hkkkkkd VERKEY *%kk&kkx * /
X ASNVER = 1, /* NO VERIFICATION */
X ASVNEW = 2, /+ VERIFY NEW FILE (OK TO MODIFY) */
X ASQVAP = 3, /* ASVNEW + OVERWRITE/APPEND QPTION */
X AgVOLD = 4, /* VERIFY OLD FILE (DO NOT CREATE NEW) */
X /x *x/
X [hkhkhkkdkkhhkhhkhkhkhxhkkhkhkkhkhk RPOSTA *khkhkkkhhkkhhhhikhkkk khdhk * f
X /* khkkrk* POSKEY *thdk* */J
X AzABS = 1, /* ABSOLUTE POSITION */
X ASREL = 2, /* RELATIVE POSITION */

PAGE 56

REV.

2

X [/* *)
X Jhkkkhkhkkkhhhkkhhkkkrdhkx YSNOGA *kkkhkhhkdkhkdhhhhhhdk rk k% */
X J* *krkkk DEFKEY *kkkkk */
X ASNDEF = -1, /* NO DEFAULT */
X A$DNC = 0O, /* DEFAULT = *NO? */
X ASDYLS = 1 /* DEFAULT = 'YES! */
X /* *x/
X [hkkhkhhkhhkhkdhkhkhdhhhhkrkt RNUMETA *hkdhhkhkhdthkhkhkhkkk kok kk */
X /********************* CNVASA *xhhkhkxhkhkhhhhkhkkhkhk hkk hkk 'k/
X /* khkkkkkx NUMKEY **xxkdx */
X ARDEC = 1, /* DECIMAL *f
X ASO0CT = 2, /* OCTAL */
X ASHEX = 3, /* HEXADECIMAL */
Xj* */
X /* */
X /********************* CNVBSA *rhkkkkkhhdhkhikhrhhh hkhx */
X /% khkkkkt NUMKEY *kkkkx *]
X /* ASDEC =1, /* DECIMAL,LEFT PADDED WITH BLANKS */
X /* A$0CT = 2, /% OCTAL, LEFT PADDED WITH BLANKS */
X /* ASHEX = 3, /* HEXADECIMAL, LEFT PADDED WITH BLANKS */
X ASDECZ = &, /* DECIAML, LEFT PADDED WITH ZEROS */
X - A$0CTZ = 5, /* OCTAL, LEFT PADDED WITH ZEROS * /
X ASHEXZ = 6, /* HEXADECIMAL, LEFT PADDED WITH ZFEROS */
X ASDECU = 7, /% UNSIGNED DECIMAL, LEFT PADDED WITH */
X /* BLANKS */
X /% */
X /% *x/
X [Jhhkhkkkdkhkrhhkhkhkhkhdkk CMDLIA *xhkdhkhhrhhhkhkhkhhhkd *x/
X /% *kkkkk KEY * kkkkk *7
X /* ASREAD = 1, /* READ NEXT ENTRY IN COMMAND LINE */
X ASNEXT = 2, /* READ FIRST ENTRY IN NEXT LINE * /
X ASRSET = 3, /* RESET TO BEGINNING OF COMMAND LINE */
X /* ASRAWI = 4, /* READ REMAINDER OF LINE AS RAW TEXT */
X ASNKWL = 5, /* ACCEPT NEW KEYWORD LIST */
X /* *hkkkkk OPJTYPE *&x&kAkx %7
X /* A$DEC =1, /* DECIMAL OPTION */
X /% ASOCT = 2, /* OCTAL OPTION */
X /* ASHEX = 3, /* HEXADECIMAL OPTION */
X /*x ASRAWI = 4, /* OPTION IS RAW TEXT */
X ASNLEC = 5, /* NAME OR DECIMAL OPTION * /
X ASNOCT = 6, /* NAME OR OCTAL OPTION *f
X ASNHEX = 7, /* NAME OR HEXADECIMAL */
X ASNAME = 8, /* NAME */
X /* kkkkkk OQPTION **kkkx *J
X ASNONE = 0, /* NO OPTION PRESENT OR NULL OPTION */
X [/* ASNAME = &, /* OPTION IS AR NAME */
X ASNUMB = 9, /* OPTION IS A NUMBER (DIGIT STRING) */
X ASNOVF = 10, /* NUMERIC OVERFLOW */
X [i' k¥ hkkk STATUS * kK k kX *[
X /* AINONE = O, /* NO OPTION TO FOLLOW KEYWORD */
X ASOPTL = 1, /* OPTION MAY OR MAY NOT FOLLOW KEYWORD */
X ASREGQD = 2, /* OPTION MUST FOLLOW KEYWORD * /
X /* */
X J*hkhhkkhhkhhdhhhhkhkhrhkt RNAMIA khkhkdrhihkbhkhkhr bk kk *f

PAGE 57

REV.

2

X /% kkkkkk NAMKEY *%dkdkx */
X ASFUPP = 1, /* FORCE UPPER CASE */
X ASUPLW = 2, /* READ UPPER AND LOWER CASE */
X ASRAWI = 4, /* READ REST OF LINE */
X /* */
X /* x/
X [hkhkkhkhkhhkhkhhhhhkhhhkkd TSCNEA *dkkhkkhkkhhhkdkrdhhkhkkhkkk * f
X /*x kkkkkkt KEY %k kK k% */
X ASTREE = 1, /* ALL ENTRIES IN A TREE */
X ASNUFD = 2, /* DO NOY SCAN SUBUFDS *f
X ASNSEG = 3, /% DO NOT SCAN SEGDIRS */
X ASCUFD = 4, /* DO NOT SCAN SUBUFDS QR SEGDIRS */
X ASDLAY = 5, /* STAY AT DIRECTORY WHEN GOING UP TREE */
X ASBACK = 6, /* BACK UP ONE LEVEL (FOR ERROR HANDLING) */
X /* */
X [hhkhkkhhkhkhhkhkrhhhkhkkhkkit JSTREA *rkkAkdhkikhxhhkrrdhkdk kk */
X /* kkkkk* KEY * Kk k% * /
X ASRGHT = 1, /* RIGHT JUSTIFY */
X ASLEFT = 2 /* LEFT JUSTIFY */
X /* *xf
X /x */
X

Jhkkhkhkhkhkkhhhkhhkhkhhkhhhhhrkhhhhkohhkhkhkhkkxhhkddhkkkhhhkkhhkkhhkkk/

SUBJECT: CHANGFS FOR CX REVISION 16

THE CHANGES TO CX FOR REVISION 16 ARE:

A. CX NOW RUNS MULTIPLE JOB STREAMS,
R. CX NOW HANDLES JOB PRIORITIES, AND
C. CPU TIME LIMITS ARE NOW SUPPORTED.

MULTIPLE JOB STREAMS REFERS TO ABILITY OF THE CX TO RUN MORE THAN ONE

JOB AT A TIME, DYNAMICALLY SPAWNING PHANTOMS AS IT NEEDS TO USE THEM.
THERE IS A LIMIT OF 64 SLAVES TO THE CX MASTER, A LIMIT WHICH CANNOT BE
REPCHED UNDER PRINOS IV AND V SINCE THESE OPERATING SYSTEMS DO NOT YET

SUPPORT MORE THAN 63 USERS. HOWEVER, IF (X IS RUNNING ON AN OLD
PARTITION DISK, THE MAXIMIMUM NUMBER OF STREAMS 1S 4.

THE FACILITY TO ASSIGN A CX JOB A PRIORITY LEVEL IS IMPLEMENTED IN TWO
PLACES; THE (CX MONITOR ITSELF, AND THE OPERATING SYSTEM. THIS
PRIORITY LEVEL IS THE MAJOR FACTOR IN DETERMINING WHICH CX JOB IS TO BE

EXECUTED NEXT, AND IT ALSO AFFECTS THE SCHEDULING OF THE CX JOB WHILE
IT IS RUNNING.

CX JOBS CAN ALSO HAVE A CPU TIME LIMIT ON HOW LONG THEY CAN RUN, AND
WILL BF LOGGED QUT IF AND WHEN THEY REACH THAT LIMIT. THE LIMIT IS IN
CPU SECONDS, AND THEREFQRE NOT RELATED TO HOW LONG THE JOB TAKES TO RUN

IN WALL CLOCK TIME. THIS LIMIT IS ENFORCED BY THE PRIMOS OPERATING
SYSTEM.

I. USER VISIBLE CHANGES

A. MULTIPLE STREAMS

MULTIPLE STREAMS IS A FEATURE THAT IS AUTOMATIC DEPENDING ON HOW THE
SYSTEM MANAGER CONFIGURES CX, THAT IS, THE USER DOES NOQT NEED 7O DO

ANYTHING NEW TO USF THE MULTIPLE STREAMS FEATURE. AS A MATTER OF FACT,
THE USER CAN DO RELATIVELY LITTLE TO CONTROL THIS FEATURE, WHICH CAN
PRESENT DANGERS TO USERS THAT HAVE USED CX IN THE PAST.

THE MAJOR PROBLEM ASSOCIATED WITH MULTIPLE STREAMS IS THAT TWO OR MORE
JOBS SUBMITTED BY THE SAME USER MAY NOW RUN AT ONCE - AT REVISION 15,

THIS WAS IMPOSSIRLE. THEREFORE, SOME USERS MAY BE SUBMITTING MULTIPLE
JOES AT ONCE WHICH CAN_NOT RUN AT THE SAME TIME FOR VARIOQUS REASONS,

INCLUDING COMOUTPUTING TO THE SAME FILE, USING THE SAME MAGNETIC TAPE

UNIT (OR FOR THAT MATTER, FAPER-TAPE, CARD READER UNIT, ETC.), OR
HAVING ONE JOB COMPILE AND THE OTHER JOB LOAD THE BINARY FILES PRODUCED
BY THE FIRST JO0B.

USERS WHO HAVE BEEN DOING THIS IN THE PAST MUST NOW USE OTHER METHODS;
FOR INSTANCE, EACH JOB COULD HAVE ITS OWN COMOUTPUT FILE; OR, WHEN ONE

JOB IS JUST ABOUT FINISHED, IT COULD SUBMIT THE NEXT JOB TO BE RUN;
THIS HAS ADDED ADVANTAGES, ONE OF WHICH IS THAT IF A JOB ABORTS, NO

PAGE 2

MORE JOBS IN THE CHAIN WILL RUN (POSSIBLY PREVENTING IMPORTANT FILES

FROM BLOWING UP).

THF USER CAN NOW EASILY DETERMINE THE PROCESS NUMBER THAT HIS JOB(S)

ISCARE) RUNNING ON, USING ONE OF THE CX STATUS COMMANDS (-A, =SNN, -@Q
OR -P); THE NUMBER AFTER THE PRIORITY COLUMN (THE LAST COLUMN 1IN THE
HEADER LINE) IS THE PROCESS NUMBER. IF THERE 1S NO NUMBER THERE, THEN

THAT JOB IS EITHER STILL WAITING, NO LONGER RUNNING, OR DROPPED. IN
THE CASE OF THE -SNN OPTION, THE PROCESS NUMBER IS THE NUMBER IN
PARENTHESES AFTER THE PRIORITY LEVEL. AGAIN, IF THERE IS NO NUMBER IN

PARENTHESES, THEN THAT JOB IS NOT EXECUTING.

B. JOB PRIORITIES

INDIVIDUAL JOBS IN THE C€X MONITOR NOW HAVE INDIVIDUAL PRIORITIES
ASSIGNED BY THE USER WHO SUBMITTED THE JOBS. THE PRIORITY LEVEL IS
TAKEN INTO ACCOUNT IN TWO PLACES; WHEN CX LOOKS FOR A WAITING JOB 7O

RUN, AND WHEN THAT JOB IS ACTUALLY RUN. IN THE FIRST PLACE, ANY JOB
WILL NEVER BE STARTED UP IF THERE IS ANOTHER JOB WAITING TO EXECUTE
WITH A HIGHER PRIORITY; THIS 1S TOTALLY INDEPENDENT OF WHEN THE JOBS

WERE SUBMITTED. DATE AND TIME OF SUBMITTAL IS ONLY TAKEN INTO
CONSIDERATION WHEN MULTIPLE JOBS WITH THE SAME PRIORITY LEVEL ARE 1IN
THE WAIT QUEUE.

ALSO, WHEN THE JOBR IS RUN, ITS PRIORITY DETERMINES THE SCHEDULAR QUEUE
THAT THE JOR WILL RUN IN, THE SAME QUEUE THAT IS AFFECTED BY THE

OPERATOR'S CHAP COMMAND. THE ALGORITHM TO DETERMINE WHAT QUEUE IT WILL
BE IN IS COMPLEX; FIRST, IT DEPENDS ON THE QUEUE THAT THE CX MONITOR
IS RUNNING IN. ALL SLAVES SPAWNED BY CX WILL RUN IN THAT QUEUE, NOT

NECESSARILY IN THE DEFAULT QUEUE (1). THIS IS A REV. 16 OPERATING
SYSTEM CHANGE. ALSO, ANY PROCESS CAN LOWER ITS QUEUE LEVEL WITH THE
NEW CHAP LOWER COMMAND. THIS COMMAND IS EXECUTED BY CX SLAVE PHANTOMS

WHEN THEY RUN A USER'S JOB.

70 DETERMINE HOW MUCH A SLAVE WILL LOWER ITS QUEUE, THE USER SUBMITTAL

PROGRAM SURBRTRACTS THE CX PRIORITY OF THE JOB FROM A VALUE CALLED THE
"MEDIAN PRIORITY", AND PUTS THE RESULTING NUMBER ON THF COMMAND LINE
AFTER THE TEXT "“CHAP LOWER ". THE MEDIAN PRIORITY IS A NUMBER WHICH

REPRESENTS THE LOWEST PRIORITY A CX JOB CAN HAVE AND STILL RUN IN THE
SAME QUEUE AS THE CX MONITOR. ANY JOBS WITH A HIGHER PRIORITY THAN THE
MEDIAN PRIORITY WILL ALSO RUN IN THE SAME QUEUE, SINCE THE CHAP LOWER

COMMAND CANNOT RE USED TO RAISE THE QUEUE OF THE JOB EXECUTING THE

COMMAND. IT ALSO CANNOT LOWER IT BELOW GUEUE 0.

THE STANDARD VALUE FOR MEDIAN PRIORITY IS 3; HOWEVER, IT IS
PER-INSTALLATION CONFIGURABLE, SO CHECK WITH THE SYSTEM MANAGER TO
DETERMINE WHAT THE MEDIAN PRIORITY IS ON THE SYSTEM.

ANOTHER PER-INSTALLATION CONFIGURABLE VALUE IS THE DEFAULT PRIORITY,
1.E. THE PRIORITY ASSIGNED TO A CX JOB WHEN THE USER HAS NOT SPECIFIED

A VALUE. THE STANDARD IS 3.

FAGE 3

TO SPECIFY THE PRIORITY LEVEL FGR A JOB, APPEND THE OPTION =PRIORITY

FOLLOWED BY THE PRIORITY LEVEL TO THE COMMAND LINE, I.E. AFTER THE
TREENAME. THE STANDARD LIMITS TO THE PRIORITY LEVEL ARE FROM O TO 7;
HOWEVER, THE SYSTEM MANAGER MAY LIMIT IT TO ANYTHING HE DESIRES,

ALTHOUGH CX AS DISTRIBUTED WILL NOT SUPPORT ANY VALUES HIGHER THAN 99
OR LOWER THAN 0.

AN EXAMPLE COMMAND LINE TO SUBMIT THE CX FILE CX_COBOL WITH A PRIORITY
0F 2 IS:

CX CX_COBOL =-PRIORITY 2

THE OPTION ~-PRIORITY MAY BE ABBREVIATED TO -PRIO. IF, AS AN EXAWMPLE,

THE MEDIAN PRIORITY ON THIS SYSTEM IS 5, AND THE CX MONITOR IS RUNNING
IN GUEUE 3, THE FOLLOWING EVENTS WILL TAKE PLACE; FIRST, THE CX
PROGRAM WILL SUBTRACT THE PRIORITY OF THE JOR (2) FROM THE MEDIAN

PRIORITY (5) PRODUCING 3 AS THE RESULT, AND PUT THE COMMAND CHAP LOWER
3 AT THE TOP OF THE COMMAND FILE WHEN IT COPIES IT OVER TO THE CX UFD.

THEN, WHEN THE JOB IS RUN, THE CX SLAVE PHANTOM, WHICH WAS STARTED UP
AND IS STILL RUNNING IN QUEUE 3, WILL EXECUTE THAT COMMAND FILE. WHEN
THE CHAF LOWER 2 COMMAND IS EXECUTED, THE PHANTOM WILL THEN BE IN GUEUE

0, THE LOWEST QUEUE ON THE SYSTEM. THEREFORE, THE USER'S JOB WILL BE
EXECUTED ENTIRELY IN QUEUE O.

C. CPU TIME LIMITS

THE CAPABILITY TO LIMIT PARTICULAR CX JOBS TO A CERTAIN AMOUNT OF CPU
TIME NOW EXISTS AT REVISION 16. THIS LIMIT IS PASSED ONTO THE

OPERATING SYSTEM, I.E. CX DOES NOT TAKE THIS LIMIT INTO CONSIDERATION
WHEN LOCKING FOR A JOB TO EXECUTE.

THE UNIT OF TIME IS THE CPU SECOND; THAT IS, THE ACTUAL AMOUNT OF TIME
THAT THE JOB HAS BEEN RUNNING IN SECONDS. ON A LIGHTLY LOADED SYSTEN,
30 CPU SECONDS CAN BECOME 1 WALL CLOCK MINUTE. ON A SYSTEM WITH A

HEAVIER LOAD, IT CAN BECOME 3 OR 4 MINUTES.

WHEN THIS LIMIT IS REACHED, THE MESSAGE CPU TIME LIMIT EXCEEDED WILL BE

OUTPUT TO THE COMOUTPUT FILE (IF THERE IS ONE), AND THE PROCESS WILL BE
LOGGED OQUT. CX WILL FLAG THIS STATUS AS "ABORTED".

TO LIMIT A CX JOB, APPEND THE OPTION -CPULIMIT FOLLOWED BY EITHER THE
NUKBER OF CPU SECONDS TO WHICH THE JOB IS TO0 BE LIMITED, OR THE STRING
"NONE", TO THE COMMAND LINE, I.E.:

CX CX_COBOL =CPULIMIT 500

OR:

Cx CX_CoBOL =-CFULIMIT NONE

THE NUMBER FOLLOWING THE ~CPULIM OPTION IS READ AS AN INTEGER*4 NUMBER,

PAGE 4

BECAUSE THE OPERATING SYSTEM WILL SUPPORT AN INTEGER*4 TIME LIMIT.

THE OPTIONS -PRIORITY AND =~CPULIMIT CAN BOTH BE PRESENT ON THE COMMAND
LINE, IN ANY ORDER, BUT BOTH OF THEM MUST FOLLOW THE TREE NAME. THE

KEYWORD —-CPULIMIT MAY BE ABBREVIATED TO =-CPULIM. A CPU LIMIT OF O IS
ILLEGAL.

NOTE THAT THIS VALUE IS RELATIVE TO THE CURRENT STATUS; IN OTHER
WORDS, IF A PROCESS HAD BEEN LOGGED IN 7 MINUTES AND HAD USED 13 CPU
SECONDS, THEN LIMITED ITS CPU TIME TO 50 SECONDS, THEN THE PROCESS

WOULD BE LOGGED OUT AFTER IT HAD CONSUMED A TOTAL OF 63 CPU SECONDS.
THEREFORE, A CX JOB WITH A LIMIT OF S00 SECONDS WILL GET ALMOST EXACTLY
THAT, AND IT WON'T HAVE TO PAY FOR THE CPU TIME CONSUMED BY THE SLAVE

WHILF IT WAS LOOKING FOR WORK ("SLAVE LABOR™).

IF THE ~CPULIMIT OPTION IS NOT INCLUDED ON THE CX COMMAND LINE, A

PER-INSTALLATION CONFIGURABLE DEFAULT WILL BE USED. THE STANDARD IS AN
INFINITE AMOUNT OF CPU TIME, I.E. '"NONE".

I11. SYSTEM MANAGER NOTES

A. MULTIPLE STREAMS

IN THE CX UFD, CALLED 'Cx*x*x*%, THERE IS A FILE NAMED PH_GO. THIS FILE
IS THE START-UP FILE FOR CX, AND THE REV. 16 OPERATING SYSTEM COMMAND
PHANTOM CX***x>PH_ GO0 WILL CAUSE THE CX MONITOR TO START UP.

THE LAST EXECUTARLE LINE OF THE FILE IS THE LINE:

RESUME *MASTER 1/1 2/1

WHERE PARAMETER 1 SPECIFIES THE MINIMUNM NUMBER OF PHANTOMS TO RUN, AND

PARAMETER 2 SPECIFIES THE MAXIMUM NUMBER OF PHANTOMS TG START UP. IN
OTHER WORDS, THE ABOVE LINF TELLS THE CX MONITOR THAT IT SHOULD ALWAYS
HAVE ONE PHANTOM (SLAVE) RUNNING, NO MORE, AND NO LESS, WHETHER IT HAS

WORK TO DO OR NOT.

THIS CONFIGURATION WILL CAUSE CX TO ACT IN THE SAME WAY THAT IT DID AT

REV. 15, AND USERS WILL NOT HAVE TO WORRY ABOUT TWO OF THEIR JOBS
RUNNING AT ONCE IN THIS CASE.

HOWEVER, TO USE THE MULTIPLE STREAMS FEATURE, DEFINE THE SECOND
PARAMETER AS THE MAXIMUM NUMRER OF STREAMS THAT C€X IS TO RUN,
IRREGARDLESS OF HOW MANY JOBS ARE IN THE QUEUE. DEFINE THE FIRST

PARAMETER AS THE MINIMUM NUMBER OF SLAVES TO HAVE READY FOR JOBS, 1IN
EFFECT "“RESERVING" THOSE PHANTOM SLOTS FOR CX. AN EXAMPLE LINE TO LET
CX RUN UP TO 22 STREAMS AT ONCE BUT RESERVE ONLY 7 IS:

RESUME *MASTER 1/7 2/26

PAGE 5

NOTE THAT THE PARAMETER DATA MUST BE OCTAL. A SUBSEQUENT FEATURE OF

THIS IS THAT CX CAN BE CONFIGURED TO NOT HAVE TO RUN ANY SLAVES AT ALL,
I.E.:

RESUME *MASTER 1/0 2/6

WILL ALLOW 6 STREAMS TO RUN SIMULTANEOUSLY, BUT WHEN THE CX MONITOR HAS

NO WORK TO0 DO, THE ENTIRE CX SUBSYSTEM WILL RUN ONLY ONE PHANTOM. IN
THE EARLIER EXAMPLE, WHERE IT WAS TOLD TO RUN A MINIMUM OF 7 SLAVES,
THERE WOULD BE A TOTAL OF 8 PROCESSES IN USE BY THE CX SUBSYSTEM (CX

AND THE 7 SLAVES).

IF CX CANNOT START UP AS MANY PHANTOMS AS IT WANTS 70, BECAUSE OF THE

"NO FREF PHANTOM" ERROR, 1T WILL NOT CRASH, BUT SIMPLY ACT AS THOUGH IT
HAD ALREADY REACHED THE MAXIMUM CONFIGURED NUMBER OF SLAVES TO RUN.
HOWEVER, IF IT CAN'T START UP THE MINIMUM NUMBER OF PHANTOMS DUE TO

THIS ERROR, IT WILL GRIPE TO THE SYSTEM CONSOLE EVERY 10 MINUTES WITH
THE MESSAGE "MINIMUM PHANTOMS NOT AVAILABLE". IT WILL STILL BE
OPERATIVE, THOUGH (UNLESS, OF COURSE, IT CAN'T GET ANY PHANTOMS AT ALL,

IN WHICH CASE IT IS EFFECTIVELY INOPERATIVE).

Cx IS DESIGNED TO RECOVER AFTER A SYSTEM CRASH;, IF A CRASH OCCURS, CX

WILL ATTEMPT TO RESTART ANY JOB THAT WAS RUNNING AT THE TIME WHEN THE
SYSTEM IS BROUGHT BACK UP.

IT IS POSSIBLE, HOWEVER, FOR CX TO BE UNABLE TO FUNCTION AFTER A SYSTEM
CRASH; IN THAT CASE, TRY RUNNING THE PROGRAM *KILL IN CX**%x AND
RESTARTING CX. IF THAT STILL DOESN'T WwORK, THEN RUN CX***>*xINIT AND

BRING CX BACK UP. ALL JOB DATA WILL BE LOST AFTER RUNNING *INIT.

IF THAT DOESN'T WORK, MAKE SURE THE FOLLOWING FILES EXIST AND LOOK

REASONABLE IN THE CX**x* UFD: PH_GO, P_SCAN, AND LOGOUT. THEN MAKE

SURE THAT THE FOLLOWING RUNFILES EXIST IN (CX***: *INIT, *KILL,
*MASTER, AND *SLAVE. THEN MAKE SURE THAT THE CCMMAND CX -A PRODUCES
THE ERROR MESSAGE "?CAN'T - JOB FILE EMPTY", OR SOME OTHER MESSAGE

INDICATING THAT IT IS FUNCTIONING.

THFN, USE FUTIL T0 UFDPROTECT THE ENTIRE CX**x* UFD 70 7 O, THEN TELL IT
TO CLEAN CXHH AND THEN CLEAN PH_#. WHEN TH1S IS DONE, CX SHOULD BE
ABLE TO BE RROUGHT UP.

B. JOB PRIORITIES

THERE ARE SEVERAL VALUES THE SYSTEM MANAGER MUST BE CONCERNED WITH WHEN

IT COMES TO CX PRIORITIES. THESE VALUES ARE:

MEDIAN PRIORITY (STANDARD 3) MEDPRI

DEFAULT PRICORITY (STANDARD 3) PRIO
MAXIMUM PRICRITY (STANDARD 7) MAXPRI
MASTER QUEUE LEVEL (STANDARD 1)

SLAVE GUEUE LEVEL C(STANDARD 1)

PAGE 6

CX WILL NOT SUPPORT A MAXIMUM PRIORITY HIGHER THAN 99, NOR WILL IT

SUPPORT EITHER A MEDIAN PRIORITY OR A DEFAULT PRIORITY THAT IS LESS
THAN ZERO OR GREATER THAN THE MAXIMUM PRIORITY, I.E. IF THE MAXIMUM
PRIORITY IS LEFT STANDARD, THE DEFAULT PRIORITY MUST NOT BE SET 70 8 OR

-1.

THE MASTER QUEUE LEVEL IS THE QUEUE IN WHICH THE CX MONITOR RUNS. THIS

DIRECTLY AFFECTS THF SLAVE QUEUE LEVEL; WHENEVER A SLAVE IS SPAWNED,
IT INHERITS THE QUEUE LEVEL THAT ITS FATHER (THE CX MONITOR) HAD.

HOWFVER, THIS MFANS THAT IF THE CX MONITOR IS SUPPOSED TO BE IN QUEUE 3

FOR INSTANCE, BUT BEFORE THE SYSTEM CONSOLE IS USED TO CHAP IT UP TO 3
IT SPAWNS A PHANTOM OR TWO, ANY PHANTOMS THAT IT SPAWNED WILL REMAIN IN
QUEUE 1 EVEN THOUGH THE CX MONITOR AND ANY NEW PHANTOMS IT SPAWNS WILL

RUN IN QUEUE 3.

THEREFORE, THE CX MONITOR MUST BE CHAPED TO THE DESIRED LEVEL BEFORE IT

SPAWNS ANY PHANTOMS. TO FACILITATE THIS, C€X WILL NOT SPAWN ANY
PHANTOMS OR SEARCH THE CX QUEUE FOR 40 SECONDS AFTER IT STARTS UP. THE
CHAP COMMAND CAN BE INCLUDED IN THE COMMAND FILE THAT STARTS CX UP AS

LONG AS THE PROCESS NUMBER THAT CX WILL RUN IN REMAINS CONSTANT AND IS
KNOWN.

THE DEFAULT PRIORITY IS THE PRIORITY ASSIGNED TO A CX JOB IF THE USER
DOES NOT EXPLICITLY ASSIGN ONE HIMSELF. THIS SHOULD GENERALLY BE THE
MIDDLE-OQF-THE-ROAD PRIORITY FOR YOUR SYSTEM.

THE MEDIAN PRIORITY REPRESENTS THE LOWEST PRIORITY A JOB CAN HAVE TO
RUN IN THE SAME QUEUE THAT THE CX MONITOR HAS. TO DETERMINE THIS

NUMBER, FIRST YOU MUST DECIDE THE FOLLOWING: WHAT RUN QUEUE A CX J0OB
SHOULD RUN IN.- IF THE USER DID NOT SPECIFY ANY PRIORITY. CALL THIS
NUMBER THE DEFAULT QUEUE LEVEL. THFN YOU MUST DECIDE THE HIGHEST GUEUE

LEVEL YOU WILL LET ANY CX JOB RUN IN. CALL THIS THE MAXIMUM QUEUE
LEVEL.

SURTRACT THE DEFAULT QUEUE LEVEL FROM THE MAXIMUM QUEUE LEVEL, THEN ADD
THE DEFAULT PRIORITY, AND THE RESULT IS THE MEDIAN PRIORITY THAT YOU
WANT. MODIFY MEDPRI, PRIO AND MAXPRI IN THE CX USER PROGRAM AND

RE-COMPILE. THEN, CHAP THE CX MONITOR UP TO THE MAXIMUM QUEUE LEVEL
WHENEVER YOU BRING IT UP, AND THE SYSTEMm IS IN FLACE. EXAMPLE:

THE HIGHEST QUEUE LEVEL YOU EVER WANT A CX JOB TO HAVE IS 3. HOWEVER,
IF THE USER DOESN'T SPECIFY A PRIORITY, YOU WANT HIS JOB TO RUN AT
QUEUE LEVEL 0. YOU HAVE ALSO DECIDED THAT THE DEFAULT PRIORITY SHOULD

BE 2. SO YOU SUBTRACT 0O FROM 3 (HIGHEST QUEUE LEVEL) AND THEN ADD THE
DEFAULT PRIORITY (2) TO PRODUCE A MEDIAN PRIORITY OF 5. SO YOU MAKE
THE APPROPRIATE CHANGES TO THE USER PROGRAM IN CX AND RECOMPILE THE

SUBSYSTEM.

PRIORITIES THAT ARE GIVEN TO J0BS THAT ARE HIGHER THAN THE MEDIAN

PRIORITY WILL RUN IN THE SAME QUEUE AS IF THEY WERE GIVEN THE MEDIAN
PRICRITY, AND ANY JOB WITH # PRIORITY LESS THAN THE MEDIAN PRIORITY
MINUS THE MAXIMUM GUEUE LEVEL WILL RUN IN THE SAME QUEUE AS IT WOULD

HAVE IF IT WERE GIVEN THAT VALUE. THE DIFFERENCE IS THAT CX USES
PRIORITIES AS THE MAJOR FACTOR IN DECIDING WHICH JOBS TO RUN NEXT;

PAGE 7

THEREFORE, A JOBR WITH PRIORITY 7 WILL ALWAYS RUN BEFORE A JOB WITH

PRIORITY 6, EVEN THOUGH THE MEDIAN PRIORITY MAY BE S5 AND THEY WOULD
BOTH RUN IN THE SAME QUEUE.

C. CPU TIME LIWMITS

THE ONLY VALUE YOU NEED TO BE CONCERNED ABOUT AS A SYSTEM MANAGER HERE
IS THE DEFAULT CPU TIME LIMIT. THE STANDARD IS NONE (I.E. INFINITE

AMOUNT OF CPU TIME FOR A CX JOB), BUT YOU CAN SET IT TO ANY VALUE YOU
WANT. SIMPLY CHANGE THE PARAMETER CPULIM IN THE DATA STATEMENT IN THE
CX USER PROGRAM, RECOMPILE AND INSTALL IN YOUR SYSTEM. THE PARAMETER

CPULIM IS AN INTEGER*4 PARAMETER, AND 1T REPRESENTS THE NUMBER OF CPU
SECONDS THE JOB wILL BE ALLOWED TO HAVE. NOTE THAT USERS MAY

CIRCUMVENT THIS DEFAULT ENTIRELY BY ALWAYS SUBMITTING JOBS WITH -CPULIM

NONE ON THE COMMAND LINE.

THERE IS A WAY FOR YOU TO CAUSE ALL JOBS LOGGING IN TO HAVE A CERTAIN

CPU TIME LIMIT OR CONNECT TIME LIMIT THAT CAN'T BE GOTTEN AROUND;
CHECK THE DOCUMENTATION ON THE NEW LIMITS CALL TO PRIMOS, AND CONSIDER
PUTTING IT IN YOUR EXTERNAL LOGIN PROGRAM.

IF A (X JOB DOES RUN OUT OF TIME, IT WILL BE LOGGED QUT, BUT THE
“PHANTOM TTY REQUEST"™ MESSAGE WON'T BE PRINTED ON THE SYSTEM CONSOLE.

HOWEVER, CX WILL DETECT THAT THF JOB HAS TERMINATED WITHOUT A CX -E AND
NOTIFY THE SYSTFM CONSOLE, FLAGGING "ABORTED" STATUS ON THE JOB.

D. TRIVIA

THERE ARE FIVE DIFFERENT MESSAGES THAT CX CAN SEND TO THE SYSTEM
CONSOLE:

CX CX MONITOR, REV 16.0

CX MINIMUM PHANTOMS NOT AVAILABLE.

OX EXECUTING FILENM FOR USER USRNAM (NN).
*C X% JOR FILENM USER USRNAM (NN) COMPLETED.
* (X * JOE FILENM USER USRNAM (NN) ABORTED.

THE FIRST MESSAGE IS SENT 8Y THE MASTER PROGRAM WHEN THE (X MONITOR
STARTS UP, AFTER THE 4OD~-SECOND DELAY. THE SECOND MESSAGE IS SENT

WHENEVEK CX IS UNABLE TO HAVE THE MINIMUM NUMBER OF SLAVES SPAWNED,
ALSO BY THE M™MASTER PROGRAM. THE THIRD IS SENT BY THE MASTER PROGRAM
WHENEVER IT STARTS UP A CX JOBR; FILENM REFERS TO THE COMMAND FILE NAME

(I.E. CX#HNN), USRNAM REFERS TO THE USERNAME OF THE SUBMITTER, AND NN
REFERS TO THE PROCESS NUMBER OF THE SLAVE THAT IS TO EXECUTE THE JOB.
THE FOURTH AND FIFTH MESSAGES ARE VARIATIONS ON THE THIRD, EXCEPT THAT

THE FOURTH IS SENT BY THE CX USER PROGRAM WHEN IT EXECUTES A (X =-E.

SOME BUG FIXES INCLUDE FIXING THE PROBLEM THAT OCCURED WHEN TWO USERS

TRIED TO SUBMIT A CX JOB AT ONCE (FILE IN USE TO ONE OF THEM), NOW THE
USER THAT WQOULD HAVE GOTTEN THE FILE IN USE MESSAGE JUST GETS A HIGHER

PAGE 8

CX QUEUE NUMBER. ALSO, CX NOW ATTEMPTS TO RETURN THE USER TO HIS HOME

UFD IN MORE CASES THAT IT CAN. HOWEVER, MOST OF THE BUGS IN CX
REVISION 15 HAVE PEEN FIXED BY REWRITING THE CODE IN THE MASTER AND
SLAVE PROGRAMS TO ALLQOW FOR MULTIPLE STREA®MS; AN EXAMPLE 1S THE "BUG"

THAT IF A CX SLAVE WENT DOWN, THE MASTER WOULD NEVER NOTICE IT, BUT
WOULD KEEP SENDING JOBS TO 1T AND FLAGGING THEM AS "ABORTED"™ 30 SECONDS
LATER. ALSO, IT WOULD TRY TO DELETE THE CXHH#NN FILE 30 SECONDS AFTER

IT WROTF THE BOOTSTRAP FILE FOR THE SLAVE Td PICK UP (NOW CALLED
PH_#NN, AT REV. 15 IT WAS C_PHFL), AND SINCE THE SLAVE SLEPT 30
SECONDS BETWEEN CHECKING FOR THE BOOTSTRAP FILE, SOMETIMES THE MASTER

PROGRAM WOULD DELETE THE CX##NN FILE BEFORE THE SLAVE EVER SAW 1T7.

JII. CX INTERNALS

THE X USER PROGRAM RESIDES IN CMDNCO; HOWEVER, EVERYTHING ELSE THAT
CX USES RESIDES IN CXx*%«*_, THE FILES THAT ARE NEEDED TO RUN THE (X
SUBSYSTEM ARE:

*MASTER - THE (X MASTER PROGRAM

*SLAVE - THE CX SLAVE PROGRAM

*INIT - THE CX SUBSYSTEM INITIALIZER

*KTLL - THE C€X SLAVE ACTIVITY FILE INITIALIZER

PH_ G0 - THE COMMAND FILE TO START UP THE CX SUBSYSTEM

P_SCAN - THE COMMAND FILE USED BY *MASTER TO SPAWN SLAVES

LOGOUT - THE COMMAND FILE INVOKED BY THE USER FPROGRAM 70 DO CX -E

RUNNING *INIT WILL PRODUCE TWO MORE FILES THAT MUST STAY INTACT ONCE
THEY ARE CREATED:

JOBS*T - CONTAINS INFORMATION OGN ALL USER'S JOBS
USER#S ~ CONTAINS INFORMATION ON AL SLAVE ACTIVITY

ALSO, WHENEVER A USER SUBMITS A CX JOB, IT IS GIVEN THE NAME:

CX#HNN - WHERE NN IS THE CX JOB NUMBER OF THAT JOB

AND WHEN CX DECIDES TO RUN 1T, IT CREATES A FILE CALLED:

PH_#NN - WHERE NN IS THE PROCESS NUMBER OF THE TARGET SLAVE

WHEN THE SLAVE (WHICH WAS SPAWNED OFF OF P_SCAN WHICH RAN *SLAVE) SEES

ITS PH_ANN FILE, IT COMINPUTS INTO IT, AND THAT FILE COMINPUTS INTO THE
CX##NN FILE THAT IS TO BE RUN. THAT FILE, WHICH WAS GENERATED BY THE
CX USER PROGRAM, STARTS THE SLAVE BACK UP AGAIN SO IT CAN DELETE THE

PH_ANN FILE (WHICH WAS GENERATED ®Y THE MASTER PROGRAM). THEN THE
SLAVE EXITS FOR THE LAST TIME, LETTING CXH#H#NN TAKE CONTROL.

WHAT CX##NN THEN DOES IS LINMIT THE JOB'S CPU TIME AND LOWER ITS QUEUE
LEVEL APPROPRIATELY, THEN IT DOES WHAT THE USER®*S COMMAND FILE WAS
GOING TO DO, EXCEPT THAT IF 1T ABORTS (OR LEAVES THE CXHH#NN FILE FOR

ANY OTHER REASON SUCH AS A CLOSE ALL OR COMINPUT SOME_OTHER_FILE ON THE
SAME UNIT), THE MASTER IS THEN ABLE TO DELETE CX##NN AND FLAG "ABORTED"

PAGE 9

STATUS ON THE JOB. IF THE COMMAND FILE IS RUN TO COMPLETION, CX -E IS

EXECUTED, AND THE USER PROGRAM DELETES THE CXH¥NN FILE, FLAGS
"COMPLETED" STATUS ON THE JOB, AND THEN COMINPUTS TO CX***>[0GOUT.

WHILE THE SLAVES ARE LOOKING FOR WCRK (IN THE FORM OF PH_#NN), THEY
CONSTANTLY (EVERY 39 SECONDS) UPDATE AND LOOK AT AN ENTRY SPECIFIC ToO
THEMSELVES IN THE USERHS FILE. 1F THEIR ENTRY IS ZEROQ, THEY COMINPUT

INTO CX***>_ 0G0UT. THE WHOLE FILE IS ZEROED BY *INIT OR =*KILL, SO
RUNNING EITHER OF THOSE PROGRAMS CAUSES ALL SLAVES TO LOG THEMSELVES
OUT. HCOWEVFR, IF THE MASTER PROGRAM IS RUNNING, IT WILL LOG SOME MORE

BACK IN AGAIN (UNLESS THE MINIMUM NUMBER OF SLAVES 1S SET T& ZERO OR IT
CAN'T SFAWN THE SLAVES FOR SOME OTHER REASON). *KILL WILL NOT WIPE OUT
THE JOB DATA FILE, HOWEVER, AND IS THFREFORE PREFERRED.

THE MASTER PROGRAM HANDLES ALL OF THE SCHEDULING OF CX JOBS, ALL OF THE
SLAVE SPAWNING, AND ALL OF THE CRASH RECOVERY PROCEDURES, INCLUDING

RECOVERING FROM ITSELF BEING LOGGED OUT, LEAVING OTHER SLAVES RUNNING.
IT DOES _NOT HANDLE THE CPU LIMIT PARAMETER, AND THE ONLY TIME IT REFERS

TO A CX JOB'S PRIORITY IS WHEN IT IS DECIDING WHICH JOB TO SCHEDULE

NEXT. THERFFORE, IF THE CX QUEUE CONTROL FILE JOBS*T IS CHANGED AFTER
A JOB IS SUBMITTED SO THAT THE PRIORITY OR CPU TIME LIMIT PARAMETERS OF
THAT JOB ARE CHANGED, THE ONLY EFFECT THAT CHANGE WILL HAVE IS IF THE

CX PRIORITY IS DIFFERENT WHEN THE CX MONITOR LOOKS AT IT. THE PRIORITY
AT WHICH THE JOB WILL RUN, AND THE CPU LIMIT OF THE JOB, WILL REMAIN AS
BEFORE, SINCE THAT INFORMATION IS IN THE CX COMMAND FILE FOR THAT JOB.

AS MENTIONED EARLIER, EACH SLAVE UPDATES ITS ENTRY IN USER#S EVERY 30
SECONDS; WHAT IT UPDATES IT WITH IS THE TIME OF DAY IN MINUTES PLUS 1

(SO THAT ZERO WILL NOT OCCUR).

IF THE MASTER SEES A SLAVE REGISTERED IN THE USER#S FILE THAT HAS NOT

UPDATED ITS ENTRY IN THE LAST 4 MINUTES, IT WILL NULLIFY THAT ENTRY.
IF A SLAVF EVFR FINDS ITS ENTRY NULLIFIED AFTER IT WRITES IT INTO THE
USER#S FILE WHEN IT FIRST RUNS, IT WILL LOG6 QUT WITH NOC COMPLAINTS

(I.E. COMINPUT INTO CX***>L0GOUT). THIS METHOD GENERALLY GUARANTEES
THE MASTER PROGRAM TO BE IN CLOSE AND CONSTANT TOUCH WITH ITS SLAVES.

WHEN A CX -€ IS EXECUTED, AND THE USER PROGRAM FINDS THAT ITS ENTRY IN
USERHS IS ZEROED (AS A RESULT OF RUNNING *INIT OR *KILL), IT WILL BOMB
OQUT WITH A BAD USER#S ERROR, BRUT THE STATUS OF THE JOB IT WAS RUNNING

WILL BE "COMPLETED", BECAUSE THE JOB WAS, AFTER ALL, COMPLETE.

ON NEW PARTITION DISKS, THE READ-WRITE LOCK ON JOBS#T WILL BE 2, AS SET

BY *INIT, SO THAT USERS WON'T HAVE T0O WAIT TO pO A €X —-A OR SOME OTHER
STATUS COMMAND. WHEN THE MASTER PROGRAM RUNS, IT SETS THE READ-WRITE
LOCK ON USER#S TO 3 SO THAT MANY SLAVES WON'T END UP FIGHTING FOR THE

RIGHT TC WRITE THE FILE EVERY 30 SECONDS; TIT WAS DISCOVERED THAT AFTER
A CERTAIN NUMBER OF SLAVES WERE RUNNING, SOME WOULD NOT GET A CHANCE 71O
WRITE THE USERH#S FILE FOR AS MUCH AS 5 MINUTES IF ITS READ-WRITE LOCK

WAS 2 OR LESS.

IfF THE MASTER PROGRAM CAN'T SET THE READ-WRITE LOCK DUE TO AN OLD

PARTITION ERROR (ESOLDP), IT WILL LIMIT THE MAXIMUM NUMBER OF STREAMS
TO 4.

PAGE 10

IV. COFPATIBILITY

ON THE USER LEVEL, CX REVISION 16 IS ENTIRELY COMPATIBLE WITH CX
REVISION 15 ASSUMING THAT CERTATIN DEFAULT VALUES ARE LEFT STANDARD.

HOKEVER, NO CX REVISION 15 PROGRAM IS IN ANY WAY COMPATIBLE WITH CX
REVISION 16 DATA FILES, OR VICF VERSA, DUE TO THE CHANGED STRUCTURE OF
THE DATA FILES JOBS*T AND USER#S, ESPECIALLY SINCE AT REVISION 15 THESE

FILES WERE CALLED JOBS* AND USER#, SO IT IS IMPORTANT TO INSTALL ALL OF
CX AT ONCE.

THE COMMAND FILES AND PROGRAMS ARE DISTRIBUTED IN SUCH A WAY THAT THE
ACTIONS TAKEN WILL BE COMPATIPLE; FOR INSTANCE, THE MASTER PROGRAM IS
TOLD TO RUN EXACTLY ONE SLAVE IN THE RELEASED PH GO FILE, JUST AS

REVISION 15 DID. ALSO, CPU LIMITS ARE DEFAULTED TO INFINITE AS A
STANDARD, AND THE VALUES MAXPRI AND MEDPRI ARE BOTH SET T0O 3, CGAUSING
CX JOBS TO DEFAULT TO THE SAME QUEUE LEVEL THAT THEY WERE RUNNING AT AT

REVISION 15.

SUBJECT: CHANGES FOR SPQOL REVISION 16

THE CHANGES T0 SPOOL FOR REVISION 16 AREF MINOR. THEY CONSIST OF ONE

BUG FIX IN THE SPOOLER PHANTOM AND A CHANGE TO THE LIBRARY SUBROUTINES
AND SPOOL TO ALLOW FOR THE REV. 16 OPERATING SYSTEM ABILITY TO USE 63
UNITS INSTEAD OF JUST 16é.

THE BUG FIX THAT WENT INTO THE SPOOLER PHANTOM IS THAT IT NO LONGER
BOMBS OUT WITH PRO NOT ASSIGNED WHEN IT ATTEMPTS TO PRINT AN EMPTY FILE

ON A CEMTRONICS PRINTER OR A PLOTTER.

THE =TUNIT AND -FUNIT OPTIONS IN THE SPOOL PROGRAM NOW ACCEPT UNIT

NUMBERS RANGING FROM 1 TO 635 INSTEAD OF LIMITING THEM TO0 BETWEEN T AND
16. ALSO, THE SPOOL$ SUBROUTINE (IN BOTH R-MODE AND V-MODE) WILL ALSO
ACCEPT UNIT NUMBER SPECIFICATIONS IN THE RANGE FROM 1 TO 63 IN THE INFO

ARRAY.

IF THIS INCREASED RANGE IS ATTEMPTED ON AN OPERATING SYSTEM EARLIER

THAN REV. 16, IT WILL CAUSE A BAD UNIT (ES$BUNT) ERROR TO OCCUR. THIS
WILL ONLY OCCUR WHEN THE LIBRARY ROUTINES ARE GIVEN UNIT NUMBERS

GREATER THAN 16.

UBJECT: PRMPC FOR RELFASE 16.0.

UG FIXES:

PRMPC NO LONGER REQUIRES ITS NRD VARIABLE LINE COUNTER.
TAR #200193.

PRIMOS 1V, REVISION 16.2 PAGE

1

—— v - e -

REVISION 16 OF PRIMOS IV HAS SEVERAL NEW FEATURES AND
EXTENSIONS. AMONG THESE ARE THE INTRODUCTION OF
TREENAMES TO INTERNAL COMMANDS, 63 FILE UNITS PER USER,

THE ABILITY TO DYNAMICALLY OBTAIN A FILE UNIT, AND

IMPROVEMENTS IN THE AREAS OF PROTECTION. SEVERAL
PRORLEMS HAVE BEEN FIXED, AND THE TOOLS FOR BUILDING
PRIMOS HAVE BEEN SIMPLIFIED AND IMPROVED. THIS

DOCUMENT DESCRIBES THESE AND OTHER TOPICS RELATED TO
REVISION 16 OF PRIMOS.

REVISION 16.2 CONTAINS SUBSTANTIAL NEW FUNCTIONALITY AS
WELL AS ERRQOR CORRECTIONS. THE NETWORK PRIMITIVES HAVE

BEEN CHANGED TO USE THE X.25 PROTOCOL. COMPUTERS USING
REV 16.2 PRIMOS CANNQOT BE NETWORKED WITH MACHINES USING
EARLIER REVISIONS. DOCUMENTATION OF THE NETWORK

CHANGES IS IN OTHER DOCUMENTS.

PRIMOS IV, REVISION 16.7 PAGE 5

1_CONFIGURATION_AND_OPERATIONAL_MODIFICATIONS

s i s o B G - = — e W S = e - d S -

- i R e - ——— - —n Sn -

THE BASIC PKROCEDURES FOR BUILDING PRIMOS IV HAVE BEEN SIMPLIFIED.
THE ONLY COMMAND FILE WHICH MUST BE RUN TO BUILD PRIMOS IS C_ALL.
1F _IT 1S NOT NECESSARY TO RECOMPILE (OR REASSEMBLE) ALL SOURCE

MODULES, SIMPLY RUN THE COMMAND FILE C_LOAD.

THE RUN FILES OF PRIMOS ARE LEFT IN THE UFD NAMED PRI1400. THE

COMMAND FILE C_COPY (ALSO IN PRI4OO) IS PROVIDED TC COPY THE RUN
FILES INTO PRIRUN. PRIMOS 1S NOW STARTED UP BY ATTACHING TOQ
PRIRUN, AND TYPING R PRIMOS. '

THE COMMAND FILE C_COLD HAS REEN SIMPLIFIED TO USE A NEW VERSION
QF MAPGEN. SEE SECTION £ FOR COMPLETE DETAILS ON MAPGEN.

RUNNING C_LOAD WILL RESULT IN THE CREATION OF A NEW PRXXXX FILE
-- PROC14. ALL DATABASES WHICH ARE INVOLVED WITH VIRTUAL MEMORY

PAGING AMD SEGMENTATION, THE TAPE DU%P PROGRAM, THE CRASH
REGISTER SAVE AREA, AND SOME UTILITY CODE USED BY THE PAGING
SYSTFM ARE CONTAINED IN SEGMENT 14. (FOR COMPLETE DETAILS ON

SEGMENT 14, SEE SECTION 9.2.)

IMPORTANT _NOTE: AT REVISION 16 OF PRI®OS, THE FORTRAN, KIDA

(ALSO KNOWN AS MIDAS), COBOL, AND FORMS
LIBRARIFS, ED (IN CMDNCO), AND THE UII PACKAGE

S Sn . S T .

THE FOLLOWING IS A TEMPLATE THAT CAN BE USED BY A SITE TO CREATE
THE COMMAND FILE C_PRMO. C_PRMO IS THE COMMAND FILE THAT LIVES
IN CHMDNCO (OF LOGICAL DISK O), AND IS USED TO BRING UP REVISION

16 OF PRIMOS.

THE TEMPLATE WHICH APPEARS BELOW IS INCOMPLETE, AND IS COMPLETED

. T 9 £

ON A PER SITE BASIS. FOR CONVENIENCE, A COPY OF THIS TEMPLATE
CALLED C_PRMO.TEMPLATE IS IN THE UFD PRIRUN. ONCE THE CHANGES
HAVE BEEN MADE TO C_PRMO.TEMPLATE, SIMPLY FUTIL IT 7O CMDNCO OF

LOGICAL DISK 0 AS C_PRMO.

THF INFORMATION THAT MUST BE_SUPPLIED IN THIS FILE IS AS FOLLOWS:

1) THE NAME OF THE CONF1G DATA FILE. THIS FILE SHOULD
RE NAMED CONFIG (THE DEFACTO PRIME STANDARD WAME FOR

THIS FILE).

2) THE LOCAL DISK(S) TO BE ADDED WHEN PRIMOS IS STARTED

UP. (SOME SITES MAY NEED TO SPECIFY MORE THAN ONE
ADDISK COMMAND IN THIS FILE.)

PRIMOS IV, REVISION 16.2 PAGE 6
3) THE AMLC LINES AND THE SPEED AT WHICH THEY ARE TO BE
SET TG WHEN PRIMOS COMES UP. (SOME SITES MAY NEED
TO SPECIFY MORE THAN ONE AMLC COMMAND IN THIS FILE.)

IN ADDITION, A SITE SHOULD INCLUDE (AT THE END OF THIS FILE) ANY

COMMANDS NECCESSARY TO BRING UP ANY SEPARATELY PRICED (OR OTHER)
SOFTWARE WHEN PRIMOS IS RROUGHT UP (E.G. DBMS, NETWORKS, ETC

o).

CONFIG =-DATA /* SPECIFY CONFIG FILE AFTER -DATA
ADDISK /* SPECIFY LOCAL DISKS TO BE ADDED
ARMLC TTY /* SPECIFY AMLC LINES

0PR 1 /* SHARE REGUIRES OPR 1
SHARE SYSTEM>EDZ2000 /* SHARE THE EDITOR - ED
SHARE SYSTEM>UIZ200Q /* SHARE THE UII PACKEAGE
SHARL SYSTEM>SZ2014A 700/ SHARE FORTRAN LIBRARY
SHARE SYSTEM>S20i148 700

R SYSTEM>S4C00

SHARE SYSTEMDKZ2(014A 700/* SHARE MIDAS LIBRARY
SHARE SYSTEM>K20148B 700

R SYSTEM>K4000

SHARE SYSTEM>C2014A 700/« SHARE COBOL L IBRARY
SHARE SYSTEM>C2(148B 700

kK SYSTEM>C4000

SHARE SYSTEM>F2014A 700/* SHARF FORMS LIBRARY
SHARF SYSTEM>F20148 700

R SYSTEM>F4C0O0

SHARE 2014

OPR O

PH CX*x%x>PH_GO /* START 'CX' MONITOR

PH SPOOLAQ>PH_PRI /* START SPOOLER PHANTOM

A CMDNCA

/* SET THE DATE AND

co TTY

khkkhkhkkkhhxk

CONFIGURATION AND OPERATIONAL MODIFICATIQONS

PRIMOS 1V, REVISION 16.2 PAGE 7

——— e e o - - — AR W G - - e S - = -

THE PR1IMOS IV OPERATING SYSTEM HAS BEEN MODIFIED TO ALLOW A
SINGLE VERSION OF THE SYSTEM TO BE CONFIGURABLE AT COLD-START TO
RUN RETWEEN 1 AND 64 USERS. THIS NFW SYSTEM OBSOLETES THE 64

USER SYSTEM, THE 16 USER SYSTEM, AND THE LARGE ADDRESS SPACE 16
USER SYSTEM. IN THE NEW SINGLE VERSION SYSTEM, EACH USER MAY BE
CONFIGURED TO HAVE ACCESS 7O 32 M-BYTES (256 SEGMENTS) OF VIRTUAL

ADDRESS SPACE, WITH A LIKIT OF 40 M-BYTES (320) SEGMENTS OF
VIRTUAL ADDRESS SPACE FOR ALL USERS COMBINED. CONFIG DIRECTIVES
ARE USED TO SPECIFY THE NUMBER OF USERS TO BE CONFIGURED, THE

NUMBER OF SEGMENTS TO ALLOW EACH USER TO ACCESS, AND THE TOTAL
NUMBER OF USER SEGMENTS AVAILABLE IN THE SYSTEM.

THE TOTAL NUMBER OF USERS TO BE CONFIGURED IS SPECIFIED BY THREE
CONFIG DIRECTIVES: NTUSR (NUMBER OF TERMINAL USERS), NPUSR
(NUMBER CF PHANTOM USERS), AND NRUSR (NU¥BER OF REMOTE USERS).

THE SUM OF THESE THREE VALUES MUST _NOT EXCEED 64.

THE NUMBER OF SEGMENTS AVAILABLE TO EACH USER 1S SPECIFIED BY A

NEW CONFIG DIRECTIVE, NUSEG. (NEW CONFIG DIRECTIVES ARE
DESCRIBED IN SECTION 7.) THIS DIRECTIVE IS USED TO SET THE SIZE
OF EACH USER'S DESCRIPTOR TABLE FOR DTARZ2, AND THUS, SPECIFIES

THE NUMBER OF SEGMENTS EACH USER CAN REFERENCE. HOWEVER, THE
SYSTEM HAS SPACE FOR A MAXIMUM OF 4096 SDW'S FOR ALL USERS.
THEREFORE, THE USERS*NUSEG PRODUCT CANNOT EXCEED 4096.

THE NSEG DIRECTIVE SPECIFIES THE NUMBER OF SEGMENTS TO BE
ALLOCATED FOR USE BY ALL USFRS. IT SETS THE SIZE OF THE AREA TO

BE USED BY THE SYSTEM FOR PAGE MAPS. THERE MAY BE FEWER PAGE
MAPS AVAILABLE THAN THE NUMBER OF POSSIBLE USER SEGMENTS. THUS,
ALTHOUGH A 64 USER SYSTEM CAN ALLOW 64 POSSIBLE SEGMENTS TO BE

ADDRESSED BY FEACH USER, THERE IS A LIMIT OF NSEG SEGMENTS WHICH
CAN ACTUALLY BRE IN USE BY ALL USERS AT ANY GIVEN TIME. THE
SYSTEM ALLOCATES SPACE FOR A MAXIMUM OF 320 PAGE MAPS. THUS,

NSEG CANNOT EXCEED 320.

THE FOLLOWING TABLE SHOWS THE CORRESPONDENCE BETWEEN THE PREVIOUS

VERSIONS OF PRIMOS IV AND THE VALUES TO BRE USED WITH THE NEW
SINGLE VERSION SYSTEM TO GET THE SAME CONFIGURATION:

VERSION ____________ NSEG______ NUSEE
64 192 32 DEFAULT
16 1464 2
16L 320 256

CONFIGURATION AND OPERATIONAL MODIFICATIOMNMS

PRIMOS IV, REVISION 16.2 - PAGE &

PR S N A X PSS-S AN Y TELIRAD. S5 5.5 AN 5 HN A0, % N

THE NUMBER OF SEGMENTS REQUIRED BY PRIMQOS IS GIVEN BY:

NSEG = N + 10 + USERSEGS

WHERE N IS THE TOTAL NUMBER OF CONFIGURED USERS AND USERSEGS IS
THE TOTAL NUMBER OF SEGMENTS TO BE AVAILABLE 7O USERS. IF IT IS

DESIRED TO LIMIT NSEG TO A NUMBER LESS THAN 192, 144, OR 320 (70
CONSERVE PAGING SPACE, FOR EXAMPLE), THE NSEG, PAGDEV, AND ALTDEV
CONFIGURATION DIRECTIVES CAN BE USED (SEE SECTION 7). IF NSEG IS

NOT MODIFIED, USERSEGS DEFAULTS AS FOLLOWS:

USERSEGS = 118 = (192 - 64 - 10}

GIVEN USERSEGS FROM THE ABOVE, THE PAGING DISK SPACE REQUIREMENTS
ARE GIVEN BY:

RECORDS = (64*%USERSEGS + 8*N + 280) * RECORDS/PAGE

WHERE N IS AGAIN THE TOTAL NUMBER OF CONFIGURED USERS.

NOTE: IF IT IS DESIRED TO START WITH A SPECIFIED AMOUNT OF

PRIMARY AND ALTERNATE PAGING SPACE, THE CALCULATION OF NSEG CAN
BE PERFORMED AUTOMATICALLY BY USING THE <RECORDS> PARAMETER ON
THE PAGDEV AND ALTDEV CONFIGURATION DIRECTIVES —-= SEE SECTION 7.

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PAGE 9

—— . ——— - - - - ——— - - -

THE DIRECTORIES THAT CONTAIN PRINOS IV SOURCE, OBJECT, AND
RUNFILES HAVE BEEN UNIFIED INTO A SINGLE DIRECTORY. THIS HAS

BEEN MADE POSSIBLE BY THE CREATION OF THE SINGLE VERSION OF
PRIMOS IV WHICH ENABLES ONE SET OF OBJECT AND RUN FILES TO BE
USED IN ALL CONFIGURATIONS.

THE DIRECTORY WHICH CONTAINS ALL OF PRIMOS 1V IS NAMED PRI40O0.
IT CONTAINS SUBDIRECTORIES FOR SOURCE, OBJECT, AND OTHER FILES.

THE RUNFILE IMAGES ARE FOUND IN PRI40OO0, ITSELF. ALL COMINPUT
FILES FOR GENERATING PRIMOS IV ARE ALSO FOUND IN PRI4OO.

THE SOURCE AND ORJECT FOR PRIMOS Iv IS RBROKEN INTO 4 PARTS:
KERNEL, FILE SYSTEM, NETWORK, AND COMMUNICATIONS. THE SOURCE
FILES FOR THESE FOUR PARTS ARE FOUND IN THE SUBDIRECTORIES KS,

FS, NS, AND €S, RESPECTIVELY. THE COMPILED (OR ASSEMBLED) OBJECT
FILES ARE FOUND IN KO, FO, NO, AND CO.

1.4.1 PRIGOO>INSERT

ALL SINSERT FILES WHICH ARE USED IN COMPILING OR ASSEMBLING
SOURCE PROGRAMS HAVE BEEN PLACED IN PRI4COU>INSERT. THUS,

SOURCE PROGRAM STATEMENTS OF THE FORM

$INSERT DVMCOM

HAVE REEN CHANGED TO

TINSERT *>INSERT>DVMCOM

IF PRIMOS SOURCE PROGRAMS ARE TO BE COMPILED OR ASSEMBLED 1IN

SOME DIRFECTORY OTHER THAN PRI40D0, A SUBDIRECTORY INSERT MUST
EXIST IN THE PRESENT HOME DIRECTORY; IN THE SUB-UFD INSERT
MUST BE ANY SINSERT FILES REQUIRED.

1.4.2 PRIALOO>UTILS

THE SOURCES FOR CERTAIN UTILITIES USED BY PRIMOS IV HAVE BEEN

MOVED INTO "PRIAODO>UTILS". THESF INCLUDE "PRIMOS'" (THE PRIMOS
PRELOADER), MAPGEN (THE PAGE MAP AND COLD START 1MAGE
GFNERATOR), AND THE VFRSION OF VPSD THAT IS LUADED WITH PRIMOS

1v FOR DEBUGGING PURPOSES (SEE SECTION 2.3 FOR COMPLETE
DETAILS ON VPSD FOR KERNEL DEBUGGING). THE COMINPUT FILES FOR
GENERATING THESE UTILITIES ARE FOUND IN PRIA4COU.

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS 1V, PEVISION 16.2 PAGE 10

o~ oo — — —— . — —— ———— s —

THE DIRECTORIES PR4 .64, PR4 .16, PR4L16, PRINET>NRA4 .64,
PRINET>NR4.16, AND PRINET>NR4L16 NO LONGER EXIST. THE PRIMOS IV
SYSTEM IS NOW LOADED BY ATTACHING TO PRIRUN AND ISSUING THE

COMMAND "R PRIMOS". FOR THOSE INSTALLATIONS SUPPORTING PRIMENET,
SECTION 1.7 EXPLAINS HOW TO INSTALL NETWORKS.

e em e am Tl e i e S o e e e on S e i o e S S B e e e S e e T ey e e e W S

SEVERAL CHANGES HAVE BEEN MADE TO THE CONFIG DIRECTIVES WHICH ARE
USED TO SPECIFY HOW PRIMOS WILL BE INITIALIZED. BELOW IS A LIST

OF THE CONFIG DIRECTIVES THAT HAVE BEEN ADDED, DELETED, OR
MODIFIED FOR REVISION 16 OF PRIMOS. FfOR COMPLETE DETAILS, SEE

SECTION 7.

FAM -~ OBSOLETED & NOW ILLEGAL
FILUNT == ADDED

MYNAME -=- OBSOLETED & NOW ILLEGAL
NET -- MODIFIED

NSEG -=- MODIFIED

NUSEG =-- ADDED

RLOGIN ~- OBSOLETED & NOW ILLEGAL

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS TV, REVISION 16.2 PAGE 11

1-7_CONFIGURATION_ AND_INSTALLATION_OF_NETWORKS

——— — — —— - — > —. v G = W s e S e —— W~ T T T - A ————

AS THE STZE AND COMPLEXITY OF PRIMENET NETWORKS EXPANDS, THE

SYSTEM MANAGER'S TASK OF NETWORK CONFIGURATION GROWS INCREASINGLY

MORE DIFFICULT. IN ORDER TO PROVIDE A FLEXIBLE AND SIMPLE
INTERFACE FOR NETWORK CONFIGURATION, A TWO STEP PROCESS HAS BEEN
INTRODUCED FOR REVISION 16. THE FIRST STEP OF THE NETWORK

CONFIGURATION IS FOR THE SYSTEM MANAGER TO CREATE A NETWORK
CONFIGURATIOM FILE USING THE SUPPLIED EXTERNAL COMMAND NETCFG.

(SEE SEPARATE DOCUMENT FOR COMPLETE DETAILS ON NETCFG.) THIS
PROGRAM WILL INTERACTIVELY GUIDE A SYSTEM ADMINISTRATOR THROUGH
MODE, LINK, AND OPTION SPECIFICATIONS REGUIRED TO DESCRIBE A

PRIMFNET NETWORK. THE RESPONSES ARE VALIDATED AND WRITTEN INTO
THE NETWORK CONFIGURATION FILE NETCON. AT PRIMOS Iv
INITIALIZATION NETCON (WHICH IS ASSUMED 7O BE IN CMDNCD) IS

OPENED AND THE INFORMATION PROCESSED.

TO INSTALL NETWORKS WITH REVISION 16 THE FOLLOWING PROCEDURE IS

USED.

FUTIL

>F PRINET>CMDNCU

—— - ———— A ———
- — . — - —— - . -

>C_NEICFG

>a0

NEXT, THE OBSOLETE CONFIG DIRECTIVES MYNAME, NET, FAM, RLOGIN

MUST BE REMOVED FROM THE PRIMOS IV CONFIGURATION FILE, AND
REPLACED WITH THE SINGLF CONFIG DIRECTIVE 'NET ON'. FINALLY THE
COLD START NETWORK CONFIGURATION FILE MUST BE CREATED WITH THE

FOLLOWING PROCEDURE:

0K, AT _CMDNCO_<PASSWORD>

0K, NETCEG

<ANSWER GUESTIONS TO DESCRIBE YOUR NETWORK>
0K,

ONCE ALL QUESTIONS DESCRIBING THE NETWORK HAVE BEEN ANSWERED IN
THE DIALOG WITH NETCFG, THE BINARY FILE NETCON WILL BE PLACED 1IN

CMDNCO (ASSUMING ONE HAS ATTACHED THERE AS INDICATED ABOVE).
NETCON WILL CONTAIN THE INFORMATION FORMERLY SUPPLIED BY THE
CONFIG DIRECTIVES NET, FAM, MYNAME, AND RLOGIN. IN ADDITION,

NOTE THAT 'CONFIG <MYNAME>' IS ALSO OBSOLETE. SPECIFICATION OF
ANY OBSOLETE CONFIG DIRECTIVE RELATED TO NETWORKS WILL RESULT IN
COLD START ERROR MESSAGE.

THE SMLC CONFIG DIRECTIVES ARE NOT RECOMMENDED WHEN CONFIGURING
NETWORKS, AS THEY WILL DISABLE ALL SHWLC MAPPING FROM THE

CONFIGURATION FILE. THE SMLC DIRECTIVES ARE INTENDED FOR THOSE
SITES THAT USE SMLC'S WITHOUT NETWORKS.

CONFIGURATION AND OPERATIONAL MODIFICATIONS

FPRIMOS IV, REVISION 16.2 PAGE 12

- - ——— - S e, . - e S T e A S . e e Sy S G i e, v - T g

THE SOQURCE, OBJECT, RUN, AND COMMAND FILES FOR THE FILE ACCESS
MANAGFR FAM ARE CONTAINED IN THE DIRECTORY CHAIN PRINET>FAM.
THE FILES IN THE UFD FAM THAT ARE GF SPECIAL IMPORTANCE TO THE

FAM INSTALLER ARE AS FOLLOWS:

PH_FAM PHANTOM COMMAND FILE
*F AM RUN FILE

C_BLD COMPILE AND LOAD
{_LOAD LOAD FROM BINARIES

TO INSTALL THE FAM, THE FOLLOWING MUSI_BE_DONE:

1) CREATE A UFD CALLED FAM (WHICH MAY BE LOGGED INTO).
THIS UFD MUST_NOT HAVE A PASSWORD.

é) FUTIL THE FILES PH_FAM AND *FAM TO THE NEWLY CREATED
UFD.

TO ENABLE FAM, SIMPLY DO ONE OF THE FOLLOWING:

1) LOGIN UNDER THE USERNAME OF FAM:

0K, LOGIN_FAM

FAM (XX) LOGGED IN AT ...

0K, R_*FAM_1000
GO

FAM WILL NOW RUN, AND NO FURTHER COMMANDS WILL BE READ
FROM THE TERMINAL.

2) RUN THE FAM AS A PHANTOM:

0K, A_FAM

0K, PH_PH_FAM

—— o — - ———

PHANTOM IS USER ...

0K,

TO ENABLE FAM TO COMMUNICATE WITH A PARTICULAR REMOTE NODE,
SFE SEPARATE DOCUMENT DESCRIBING NETCFG. IF REMOTE NODES ARE
NOT SPECIFIED PROPERLY WITH NETCFG, FAM WILL TERMINATE WITH

THE MESSAGE T*x***ST 26" AT THE TERMINAL WHICH ENABLED FAM.
THE MESSAGE *FAMSTOP AT 000026* WlLL BE PRINTED AT THE
OFPERATOR (USER 1) CONSOLE.

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS 1V, REVISION 16.2 PAGE 13

THE DISK BOOTSTRAP PROGRAM, BOOT, HAS BFEEN CHANGED TO CATCH MORE
ERRORS AND TO EITHER HALT WITH AN ERKROR CODE IN THE CONTROL PANEL
DATA LIGHTS OR TO PRINT AN ERROR MESSAGE. THE ADDITIONAL CHECKS

INCLUDE RUNNING IN MACHINE CHECK MODE, CHECKING UP TO 64K WORDS
OF MEMORY AND A MULTI-RECORD CONSISTENCY (HECK.

PRIOR TO REVISION 16 OF PRIMOS, THE BOOT PROGRAM FOR A STORAGE
MODULE WAS CONTAINED IN A SINGLE 1040 wORD RECORD. AT REVISION
16, THE BOOT PROGRAM HAS BEEN MODIFIED TO USE MORE THAN ONE

RECORD WHEN BOOTING OFF A STORAGE MODULE.

THE DISK B0OOT, BOOT, OPERATES IN TWO STEPS. ONLY ONE RECORD IS

READ IN BY THE CONTROL PANEL BOOT, CPBOOT. THIS RECCGRD IS ONLY A
DISK INPUT ROUTINE THAT LOADS THE RFST GF THE DISK BOQOT. BOOT
THEN INITIALIZES THE SYSTEM CONSOLE AND TYPES °*PHYSICAL DEVICE='.

AFTER THE PHYSICAL DEVICE NUMBER IS TYPED BY THE USER, BOOT
ATTEMPTS TO FIND AND LOAD THE APPROPRIATE DOS INTO MEMORY AND
TRANSFERS CONTROL TO DOS.

1.8.1 ERRORS

FRRORS DETECTED WHILE LOADING BOOT USING ITS OWN FIRST RECORD
WILL CAUSE A HALT WITH AN ERROR CODE IN THE CONTROL PANEL DATA

LIGHTS. THE ERRORS CHECKED AND PUT INTO THE LIGHTS AT THIS
STAGE WILL BE:

ERROR QCTAL #_IN_LIGHTS
PARITY 100
MACHINE CHECK 101
NON-OCTAL PHYSICAL DEVICE NUMEBER 102
BAD DEVICE TYPE 103
BAD STATUS OPTION B, EB',

STORAGE MODULE, DISKETTE 104
BAD RECORD ID - BAD CRA (HIGH-LOW) 105
INCOMPATIBLE ROOT RECCRDS 106
YFILE' NOT FOUND 107
MEMORY TEST FAILUKE 110

PARITY ERROR AND MACHINE CHECK ERROR, 100, 101

IF A PARITY OR MACHINE CHECK ERROR OCCURS WHILE LOADING THE
BOOT PROGRAM ITSELF, THEN A HALT WILL OCCUR WITH THE CODE

100 OR 101 RESPECTIVELY IN THE CONTROL PANEL DATA LIGHTS.
PARITY AND MACHINE CHECK ERRORS ARE CAUGHT BY THE HARDWARE.
NO FURTHER INFORMATION IS AVAILABLE ON THE P100, P200 OR

P300. ADDITION INFORMATION CAN BE FOUND IN THE DIAGNOSTIC
STATUS WORD ON THE P400C OR P500. AFTER THE MEMORY TEST,
THE ERROR MESSAGES, 'PARITY ERRGR', OR, 'MACHINE CHECK®,

WItL BE PRINTED. IF THE ERRORS PERSIST, THE MESSAGES
PERSIST.

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PAGE 14

NON OCTAL PHYSICAL DEVICE NUMBER, 102

THE MESSAGE, 'OCTAL ONLY', WILL BE PRINTED IF THE USER
ENTERS A NON OCTAL CHARACTER FOR THE PHYSICAL DEVICE NUMBER
THE 'PHYSICAL DEVICE=' PROMPT IS ISSUED AGAIN AT THE SYSTEHM

COMCOLE..

BAD DEVICE TYPE, 103

THE BAD DEVICE TYPE CODE WILL APPEAR IN THE DATA LIGHTS 1F

A DEVICE TYPE OF 7 IS DETECTED. THE 'PHYSICAL DEVICE='
PROWMPT IS ISSUED AGAIN AT THE SYSTEM CONCOLE..

BAD STATUS, 104

WHENEVER BAD STATUS IS DECTECTED, THE STATUS IS STORED 1IN
LOCATION 40 OCTAL. DURING THE FIRST PHASE, LOADING THE
BOOT PROGRAM ITSELF, A HALT THEN OCCURS WITH THE CODE 104

IN THE CONTROL PANEL DATA LIGHTS. WHILE TRYING TO LOAD
D0OS, THE MESSAGE 'BAD STATUS' IS PRINTED FOLLOWED BY THE

STATUS WORD.

BAD RECORD Ib, 105

AS EACH RECORD IS READ, THE RECORD ADDRESS REQUESTED IS
CHECKED AGAINST THE ADDRESS OF THE RECORD READ AS FOUND 1IN

THE RECORD ITSELF. IF THESE ADDRESSES DO NOT MATCH, THEN A
HALT WILL OCCUR WITH THE CODE 105 IN THE CONTROL PANEL DATA
LIGHTS. THE REQUESTED ADDRESS IS IN LOCATIONS 723 AND 724

OCTAL AND THE ADDRESS IN THE RECORD IS IN LOCATIONS /760 AND
7617 OCTAL.

WHEN SEARCHING FOR OR LOADING DOS, A MESSAGE WILL BE
PRINTED 'BAD RFECORD ID, RRRRRR RRRRRR FFFFFF FFFFFF', WHERE
THE R'S ARE TWO WORDS OF REQUESTED OCTAL ADDRESS AND THE

F'S ARF TWO WORDS OF FOUND OCTAL ADDRESS. THE 'PHYSICAL
DEVICE=' PROMPT IS ISSUED AGAIN AT THE SYSTEM CONCOLE..

INCOMPATIBLE ROOT RECORDS, 106

THE FIRST AND SECOND RECORDS ARE CHECKED TO SEE IF THEY
COME FROM THE SAME VERSION OF THE BOOT PROGRAM. THEY MAY
COME FROM DIFFERENT VERSIONS IF AN GLD (CONTROL PANEL)

CPHOOT WHICH ALWAYS READS FROM UNIT ONE GETS THE FIRST
RECORD OF A NEW (DISK) BOOT. THE NEW BOOY GETS ITS SECOND
RECORD FROM THE UNIT DESIGNATED BY SWITCHES & AND 9. THE

SECOND AND SUBSEQUENT RECORDS MAY THEREFORE COME FROM A
DIFFERENT VERSION OFfF BOOT. IF SUCH AN INCOMPATIBILITY IS
RECOGNIZED, THEN THFE POOT PROGRAM WILL HALT WITH A 106

OCTAL IN THE DATA LIGHTS.

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PAGE 15

'FILE®' NOT FOUND, 107

IF THE REQUIRED VERSION OF DOS OR THE DOS UFD IS NOT ON THE
REQUESTED PHYSICAL DEVICE, THEN THE MESSAGE, "'FILE' NOT
FOUND", WILL BF PRINTED, WHERE 'FILE' IS THE NAME OF THE

REQUESTED FILF, THE 'YPHYSICAL DEVICE=' PROMPT IS ISSUED
AGAIN AT THE SYSTEM CONCOLE..

MEMORY TEST FATLURE, 110

WHILE TESTING THE MFMORY, IF THE TEST PATTERN WRITTEN AND
THAT READ DO NOT MATCH, THEN A MESSAGE WILL BE PRINTED,
'MEM TEST MISMATCH LOC XXXXXX', WHERE XXXXXX IS THE

LOCATION OF THE WORD BEING TESTED. DURING MEMORY TEST, IF
EITHER A PARLITY FRROR OR A MACHINE CHECK IS DETECTED, THEN
THE ADDRESS OF THE WORD BEING TESTED WILL BE PRINTED

FOLLOWED RY THE MESSAGE 'PARITY ERROR' OR ‘*MACHINE CHECK'.
THE 'PHYSICAL DEVICE=' PROMPT IS ISSUED AGAIN AT THE SYSTEHW

COMCOLE..

1-9_HALIS

UNDER CERTAIN UNUSUAL CIRCUMSTANCES (HARDWARE OR SOFTWARE
MALFUNCTION), PRIMOS WILL HALT (AFTER HAVING EXECUTED A HLY
INSTRUCTION).

THE HALTS THAT ARE RFLATED TO HARDWARE ARE CALLED CHECKS. (FOR A
COMPLETE DISCUSSION OF CHECKS IN THE P400, SEE MANZ2798.) WHEN

PRIMOS HALTS DUE TO A CHECK OF SOME KIND, AN ADDRESS (OCTAL) IS
LEFT IN THE DATA LIGHTS ON THE CONTROL PANNEL. WHEN THIS OCCURS,
THE HALT 1S SAID TO BE A CODED HALT.

FOR OTHER HALTS (SOFTWARE RELATED), A LOAD MAP OF PRIMOS
(M PRMOS) AND THE CONTENTS OF THE DATA LIGHTS ARE USED TO

DETERMINF THE LOCATION OF THE HALT.

CHECKS INDICATE VARIOUS (AND SOMETIMES SERIOUS) EXCEPTIONAL

CONDITIONS THAT HAVE OCCURED IN THE HARDWARE. WHEN A CHECK
OCCURS, FOUR WORDS OF INFORMATION (PB HIGH, PB LOW, KEYS, AND
MODALS) ARE SAVED IN A CHECK HEADER AND CONTROL IS TRANSFERRED

TO THE WORD FOLLOWING THE CHECK HEADER. THE CHECK HEADERS ARE
WIRED DOWN IN THE SEG4 MODULE, AND HENCE CAN BE EXPECTED NOT
TO MOVE. CURRENTLY DEFINED CHECKS ARE:

SYMBOL HEADER LIGHTIS DESCRIPTION

eSS mamm,mem- SaEmeme—m—— —— e e I = ———

PWRFL_ 200 206 POWER FAILURE

MEMPA_ 270 277 UNCORRECTED MEMORY PARITY ERROR
MCHK 300 306 MACHINE CHECK

MMOD _ 310 516 MISSING MEMORY MODULE

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PAGE 16

—— X o . - S A A A - o= S

THE FOLLOWING ARE HALT LOCATIONS IN PRIMOS WHEN MEMORY ERRORS
OCCUR:

SYMBOL DESCRIPIION

BDMEM_ BAD MEMORY AT coLp START. THE PAGE IS
AUTOMATICALLY MAPPED OUT BY DEPRESSING THE START
SWITCH ON THE CONTROL PANEL. THE HALT IS IN

SEGT4.

MEMPA_ SEE CHECKS (ABOVE).

MMOD_ SEE CHECKS (ABOVE).

CONFIGURATION AND OPERATIONAL MODIFICATIOMNS

PRIMGS 1V, REVISION 16.2 PAGE 17

_——— k. — - - S - - T e - A D e e ——— e —

P - R R PR AR RN LA LA

2.1.1 ADDITIONAL FILE UNITS

THE NUMBER OFf FILE UNITS AVAILABLE T0 EACH USER HAS BEEN
INCREASED TQ 63; UNITS 1 THRU 62 MAY BE USED FOR ANY PURPOSE,

AND UNIT 63 1S RESERVED AS THE COMOUTPUT FILE UNIT.

2.17.2 NEW SRCH$$ KEY - SYSTEM SUPPLIED FILE UNIT

IT 1S NOW POSSIBLE TO HAVE PRIMOS CHOOSE AN UNUSED FILE UNIT
FOR OPERATIONS PERFORMED BY SRCHSS.

KEGETU PRIMOS CHOOSES AN UNUSED FILE UNIT NUMBER AND
RETURNS IT TO THE CALLING PROGRAM IN UNIT.

WHEN REQUESTED TO SUPPLY A FILE TO UNIT NUMBER WITH
THE USE OF THE KEY KS$SGETY, SRCH$$S SUPPLIES THE
HIGHEST UNIT NUMBER THAT IS CURRENTLY NOT IN USE.

THIS POLICY WILL TEND TO AVOID CONFLICT WITH
EXISTING COMMON USAGE, SUCH AS UNIT 6 IS "THE"
COMINPUT UNIT.

THE USER SHOULD NOT BUILD ANY DEPENDENCIES ON THE
ABOVE POLICY INTO ANY OF HIS PROGRAMS AS SRCH$$ IS

SPECIFIED TO RETURN ANY UNUSED UNIT. 1IN FACT, THE
USER 1S ENCOURAGED TO ALWAYS USE THE K$GETU FEATURE
TO AVOID ANY FUTURE CONFLICT WITH UNITS USED BY

PRIME SUPPLIED SUB-SYSTEMS (MIDAS, ETC.).

K$GETU (:40000) IS AN ADDITIVE KEY AND IS ADDED T0O

THE KEY(S) SUPPLIED TO SRCHSS.

EXAMPLE:

INTEGER*2 CODE, TYPE, UNIT
$INSERT SYSCOM>KEYS.F

CALL SRCH$$(KSREAD+KSGETU,'FILE',4,UNIT,TYPE,
¥ CODE)
IF (CODE .NE. 0) GOTO ERROR_PRDCESSOR

THE ABOVE FORTRAN CALL WILL ATTEMPT TO OPEN THE FILE NAMED
VFILE' INM THE USER'S CURRENTLY ATTACHED UFD. IF SUCCESSFUL,

THE FILE UNIT NUMBER ON WHICH 'FILE' HAS BEEN OPENED IS
RETURNED IN UNIT. THE TYPE OF THE FILE QPENED IS RETURNED IN
TYPE, AND COPE IS SET TO ZERO IF THERE ARE NO ERRCRS. IF

THERE ARE ANY ERRORS, CODE WILL BE NONZERO, AND THE VALUES OF
TYPE AND UNIT ARE UNDEFINED.

CCNFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMCS 1V, REVISION 16.2 PAGE 18

IF NO FILE UNITS ARE AVAILABLE, THE ERROR CODE ESFUIU (ALL

UNITS IN USE) IS RETURNED. THIS CODE IS RETURNED IF EITHER 1)
THE PROCESS (USER) HAS EXCEEDED THE MAXIMUM NUMBER OF FILE
UNITS THE PROCESS (USER) MAY HAVE, OR 2) THE TOTAL NUMBER OF

FILE UNITS IN USE FOR ALL PROCESSES (USERS) EXCEEDS THE
BAXIMUM NUMBER OF FILE UNITS AVAILABLE TO ALL PROCESSES

(USERS) .

2.1.3 NEW PRUF$E KEY = GUARANTEED WRITE TO DISK

IT IS NOW POSSIBLE TO GUARANTEE THAT PRWFS$$ WHEN CALLED WITH

THE KFY K$WRIT WJILL NOT RETURN UNTIL THE DISK FKECORD(S)
INVOLVED ARE WRITTEN TO DISK.

K&EFRCW ACTUALLY PERFORM THE WRITE TO DISK BEFORE EXECUTING
THE NEXT INSTRUCTION 1IN THE PROGRAM. SINCE THE
K$FRCW KEY DEFEATS THE DISK BUFFERING MECHANISH

(ASSOCIATIVE BUFFERS) IT SHOULD BE_USED _WITH_ CARE_AS

I1T7__INCREASES THE ACTUAL AMOUNT OF DISK 1/0. IT

P A - A —G AR =

SHOULD ONLY BE USED WHEN A PROGRAM MUST KNOW THAT

DATA IS PHYSICALLY ON A DISK (E.G., AS WHEN
IMPLEMENTING ERROR RECOVERY SCHEMES).

THE PROGRAMMER IS RESPONSIBLE FOR ENSURING THAT ONLY
ONE PROCESS (USER) IS INVOLVED IN THE PRWF$$ CALL
CONCURRENTLY., THE FILE ®MAY BE OPEN FOR USE BY

SEVERAL PROCESSES (DEPENDING ON THE SETTING OF THE
FILE'S READ/WRITE CONCURRENCY LOCK, RWLOCK). THE
FORCED WRITE APPLIES ONLY TO THE DATA WRITTEN BY THE

PROCESS PERFORMING THE OPERATION.

K$FRCW (:40000) IS AN ADDITIVE KEY AND IS ADDED TO

o o o e e e o

THE K$WRIT KEY SUPPLIED TO PRWF§S$.

EXAMPLE :

INTEGER*2 ARRAY (40), CODE, UNIT, RET
$INSERT SYSCOM>KEYS.F

CALL PRWFSS(KSWRITH+KSFRCW+KSPREA,UNIT,LOCCARRAY),
X 10, INTL(10) ,RET,CODE)
1F (CODE .NE. 0) GOTO ERROR_PROCESSOR

THE ABOVE FORTRAN CALL WILL CAUSE THE FILE OPEN ON UNIT NUMBER
UNIT TO BE POSITIONED TO THE TENTH WORD IN THE FILE, AND THE

FIRST 10 WORDS OF ARRAY WILL BE HRITTEN TO 1IT. THE NEXT
INSTRUCTION IN THE USER'S PROGRAM WILL NOT BE EXECUTED UNTIL
THE DATA HAS ACTUALLY BEEN WRITTEN TO DISK. IF AN ERROR IS

ENCOUNTERED WHILE WRITING TO DISK, THE ERROR CGDE E$DISK (DISK
I1/0 ERROR) IS RETURNED. IF MORE THAN ONE CONCURRENT USER OF
THE DISK RECORD IS DETECTED, THE ERROR CODE ESFIUS (FILE IN

USE) IS RETURNED. IN THIS CASE, THE WRITE IS NOT LOST, BUT
WILL NOT BE PERFORMED IMMEDIATELY.

NEW AND MODIFIED PRIMOS IV FACILITIES

PRIMOS IV, REVISION 16.2 PAGE 19
2.1.4 KFYS.F UPDATE

THE FOLLOWING IS AN UPDATED LISTING OF SYSCOM>KEYS.F.

C SYSCOM>KEYS.F MNEMONIC KEYS FOR FILE SYSTEM (FTN) 077257178

NOLIST

c

C TABSET 6 11 28 69

¢

INTEGER*?2 KSREAD,KIWRIT,K$POSN,K$TRNC,K$RPOS,KEPRER,KSPREA,

X K$+POSR K$POSA K$CONV, K$RDWR K$CLOS ,K$DELE KSEXST , K$GETU,
X K$IUFD ,K$ISEG,K3CACC,KSNSAM KINDAM ,KENSGS ,KENSGD ,KSCURR,
X K$IMFD,KSICUR, KSSETC,K$SETH, K$ALLD ,K$SPOS,K$GOND K$MSIZ,
X KSMENT, KSENTR,KSSENT,K$GPOS,KSUPOS ,KSNAME ,KSFRCHW,
X K$PROT,KSDTIM, K$DMPB,KSRWLK, KSNRTN,KSISRTN,KSIRTN,KSHOME,
X K$MVYNT ,K$RSUR , KSFULL ,K$FREE

PARAMETER
X
X [HxXkhkkhkhkhkhkhkhk AR AAK IRk RRARAA A Ak hkkd kb hkh dhkkd Ak hhkhhhdkhhhddhkhkhkk/
X /* * /
X /+* */
X /x KEY DEFINITIONS */
X /* */
X /* *x/
X JhkkhhhkhkkhkhkAkdkkbrdkhkkd PRUFES #hkhkkdkkrkhhrhhthhhdd */
X /* *xxkkxx RWKEY ok Kok kK */
X K$READ = =1, /* READ * /
X K$WRIT = :2, /* WRITE *x/
X K$¢POSN = :3, /* POSITION ONLY */
X K$TRNC = :4, /* TRUNCATE x/
X K$RPOS = :5, /* READ CURRENT POSITION */
X /* kkhkkhkhkx POSKEY *kkikkd */
X K$PRER = :0, /* PRE-POSITION RELATIVE */
X KSPREA = :10, /* PRE-POSITION ABRSOLUTE */
X K$POSR = :20, /* POST-POSITION RELATIVE */
X K$POSA = :30, /% POST-POSITION ABSOLUTE */
X /* *hkkkkx MODE % d % % ke Kk * /
X K$CONV = :400, /* CONVENIENT NUMBER OF WORDS */
X K$FRCW = 240000, /* FORCED WRITE TO DISK */
X /* */
X [xkhkhkhkkkkhkkthkhhhhhkhkk SRCHEF *rdkkxdkhkhhkdkArdhkhkrhhhax */
X /* *hkhhkkkx ACTION *krxhx *f
X /* KSREAD = :1, /* OPEN FOR READ */
X /* K$UWRIT = :2, /* QOPEN FOR WRITE */
X KERDWR = :3, /* OPEN FOR READING AND WRITING */
X K$CLOS = :4, /* CLOSE FILE UNIT */
X K$DELE = :5, /*x DELETE FILE *f
X K$EXST = :6, /* CHECK FILE'S EXISTENCE */
X K$GETU = :40000, /* SYSTEM RETURNS UNIT NUMBER */
X /* kxkkx% REF *xkk kk ok */
X K$IUFD = :0, /* FILE ENTRY IS IN UFD */
X K$ISEG = 100, /* FILE ENTRY IS IN SEGMENT DIRECTORY */
X K$CACC = 1000, /* CHANGE ACCESS * /
X /* *xkkkk NEWFIL **xtxksk * /
X KENSAM = ::0, /* NEW SAM FILE *f

NEW AND MODIFIED PKRIMNOS IV FACILITIES

PRI

M0S IV, REVISION 16.2

PAGE

20

X KSNDAM = 2000, /* NEW DAM FILE */
X KSNSGS = :4000, /* NEW SAM SEGMENT DIRECTORY */
X KENSGD = :6000, /* NEW DAM SEGMENT DIRECTORY */
X K$CURR = :177777,7* CURRENTLY ATTACHED UFD */
X /* */
X Jhkhhkhkhkrkhkhhkhhhkhkhhhkk ATCHES *hkhkkhkkhkhkhhkhdhkhhkkhhkxk */
X /=* kkkkkd KEY hk kkkk *x/
X KeIMFD = :0, /* UFD IS IN MFD */
X KsICUR = :2, /* UFD IS In CURRENT UFD *f
X /* kkkhik KEYMOD *kkkkx *x/
X KISETC = :0, /* SET CURRENT UFD (DO NOT SET HOME) */
X K$SETH = :1 /* SFT HOME UFD (AS WELL AS CURRENT) */
X /* kkkkkx NAME * ok ok k ok k * /
X K$HOME = :0, /* RETURN TO HOME UFD (KEY=KSIMFD) */
X /% *xkkkk* | DISK sk okkkk */
X K+ALLD = :100000,/* SEARCH ALL DISKS */
X /* XK$CURR = :177777,/* SEARCH MFD OF CURRENT DISK *)
X /* */
X fhhhkhkhkdkhkhhhhhkbhkthhhihkh SGDRIS *hkkkhkkdkhhkkhhhhkkdkkhkk L ¥4
X /* khkkhkkk KFEY *hkkkkk */
X KsSPOS = :1, /* POSITION TO ENTRY NUMBER IN SEGDIR *x/
X K$GOND = :2, /* POSITION TQ END OF SEGDIR */
X KtGPOS = :3, /* RETURN CURRENT ENTRY NUMBER */
X KEMSIz = :4, /* MAKE SEGDIR GIVEN NR OF ENTRIES */
X K$MVNT = :5, /% MOVE FILE ENTRY TC DIFFERENT POSITION */
X K$FULL = =6, /* POSITION TO NEXT NON-EMPTY ENTRY */
X K$FREE = :7, /* POSITION TO NEXT FREE ENTRY */
X /=* */
X [fhrkhkrkkhhhkhkhhhdrhhhhhrd RDENTE AAAAhAhhkAr Rk Ak khkk hkok */
X /x kkkkkk KEY *kkkkk%k *x/
X /* KSREAD = :1, /* READ NEXT ENTRY */
X K$RSUB = :2, /* READ NEXT SUB-ENTRY * /
X /* K$GPOS = :3, /* RETURN CURRENT POSITION IN UFD */
X KEUPOS = :4, /* POSITION IN UFD */
X KENAME = :5, /* READ ENTRY SPECIFIED BY NAME */
X /*x */
X [Jhkhkkhhkhhhkkhhkhkkrhkhhkhk SATRES *hakkakkdkhkkhhkhhhhhd */
X /* xkkkxk KEY *k kkk ok *x/
X K$PROT = :1, /* SET PROTECTION */
X KsDTIM = :2, /* SET DATE/TIME MODIFIED * /
X KIDMPB = :3, /* SET DUMPED BIT */
X KSRWLK = =4, /* SET PER FILE READ/WRITE LOCK */
X /x */
X [fhikrhkhhkhhhkrxhkhkkkrhkd FRPRSS *hhhkdkkhhkdkhkkhkkkkkhkk */
X /% khkkkkk KLY * &k hk ok */
X KENRTN = :0, /* NEVER RETURN TO USER */
X K$SRTN = :1 /* RETURN AFTER START COMMAND */
X KSIRTN = :2 /* IMMEDIATE RETURN TO USER *]
X /% */
X

[kkkhkhkhdhkhkhdhkhhhhthkhhkhhkhhrhhkrixhkthkhkithk ik kkkkkhkkkkkhkhkkkhhkkk [

LIST

NEW AND MODIFIED PRIMOS IV FACILITIES

PRIMOS IV, REVISION 16.2 PAGE 21

2.1.5 ERRD.F UPDATE

THE FOLLOWING IS AN UPDATED LISTING OF SYSCOM>ERRD.F.

C SYSCOWM>ERRD.F MNEMONIC CODES FOR FILE SYSTEM (FTN) 07725178
NOLIST

¢

c TABSET 6 11 23 56 65

C

INTEGER*? ESEOF ,EBOF, ESUNOP, ESUTUS, ESFIUS ESBPAR ESNATT,

X E$FDFL, ESDKFL, ESNRIT, ESFDEL, ESNTUD,ESNTSD ,ESDIRE,
X ESFNTF, ESFNTS , ESBNAM,ESEXST,ESDNTE, ESSHUT ,ESDISK,
X E$BDAM ESPTRM, ESBPAS ,ESBCOD,ESBTRN,ESOLDP ,ESBKEY,
X ESBUNT,E$BSUN,ESSUNO , ESNMLG,ES$SDER,ESBUFD,ESBFTS,
X ESFITB, ESNULL, FSIREM, ESDVIU,ESRLON, ESFUIU, ESDNS,
X ESTMUL ,E$SFBST ,E$BSGN, ESFIFC,ESTMRU, E$SNASS ,ESRBFSYV,
X ESSEMO, ESNTIM, ESFABT ,ESFONC,ESNPHA,ESRUOM , ESWTPR,
X ESITRE,ESLAST

c

PARAMETER

X
X [Jhhkhkkkhhkhhhkhhkhhkhhhkhhdhhrkhkhkh kb kkhhkhkk Ak khkkhkkkhkhhkrhhd /
X /* *x/
X /% */
X /* CODE DEFINITIONS x/
X /* */
X /¥ */
X ESEOF= 1, /* END OF FILE PE *x/
X E$BOF = 2, /* BEGINNING OF FILE PG */
X ESUNOP= 3, /*x UNIT NOT OPEN PD,SD */
X EsUIUS= 4, [* UNIT IN USE SI */
X ESFIUS= 5, /* FILE IN USE S1 *x/
X EsBPAR= 6, /* BAD PARAMETER SA */
X ESNATT= 7, /* NO UFD ATTACHED SL,AL */
X ESFDFL= 8, /* UFD FULL SK *x/
X E$DKFL= 9, /* DISK FULL bJ */
X ESNRIT=10, /* NO RIGHT SX */
X EsFDEL=11, /* FILE OPEN ON DELETE SD */
X ESNTUD=12, /* NOT A UFD AR */
X E$NTSD=13, /* NOT A SEGDIR -- */
X EsDIRE=14, /* IS A DIRECTORY - */
X ESFNTF=1S, /* (FILE) NOT FOUND SH,AH */
X E$SFNTS=16, /* (FILE) NOT FOUND IN SEGDIR SQ */
X ESBNAM=17, /* ILLEGAL NAME Ca *x/
X EsEXST=18&, /* ALREADY EXI1STS Cz */
X ESDNTE=1G6, /* DIRECTORY NOT EMPTY == */
X E$SKHUT=20, /* BAD SHUTDN (FAM ONLY) BS *f
X E$DISK=21, /* DISK I/0 ERROR WB */
X E<BDAM=22, /* BAD DAM FILE (FAM ONLY)) *x/
X FSPTRM=23, /* PTR MISMATCH (FAM ONLY) PC,DC,AC */
X ESBPAS=24, /* BAD PASSWORD (FAM ONLY) AN */
X E$BCOD=25, /* BAD CODE IN ERRVEC -- */
X ESRTRN=26, [/* BAD TRUNCATE OF SEGDIR - *x/
X ESOLDP=27, /* OLD PARTITION - */

NEW AND MODIFIED PRIMOS IV FACILITIES

PRIMQCS

Iv,

REVISION 16.2

PAGE

22

X E$BKEY=28&, [/* BAD KEY - */
X ESBUNT=29, /* BAD UNIT NUMBER - *f
X EEBSUN=30, /*x BAD SEGDIR UNIT SA */
X EESUNO=31, /* SEGDIR UNIT NOT OPEN - *x/
X ESNMLG=32, /* NAME TO0O LONG - */
X E$SDER=33, [/* SEGDIR ERROR sa */
X EIBUFD=34, [+ BAD UFD - */
X E$BFTS=35, /* BUFFER T0O0 SMALL - * /
X E$SFITR=36, [/* F1LE TO0O0 BIG - */
X EENULL=37, /* (NULL WMESSAGE) - */
X E$IREM=38, /% ILL RENMOTE REF - */
X EsDVIU=39, /*x DEVICE IN USE - */
X ESRLDN=40, /f* REMOTE LINE DOWN - */
X ESFUIU=41, [/* ALL UNITS IN USE it */
X ESDNS=42, /* DEVICE NOT STARTED - */
X E3xTMUL=643, /* T00 MANY UFD LEVELS - */
X E$FBST=44, [/* FAM - BAD STARTUP - */
X E$SBSGN=45, /* BAD SEGMENT NUMBER - */
X E$FIF(C=46, /* INVALID FAM FUNCTION CODE - */
X ESTMRU=47, /* MAX REMOTE USERS EXCEEDED - */
X ESNASS=48, f* DEVICE NOT ASSIGNED - *x/
X EEBFSV=49, f* BAD FAM SVC - * /
X F$SEMO=50, /* SEWM OVERFLOW - */
X ESNTIM=51, /* NO TIMER - *x/
X ESFABT=52, /% FAM ABORT - */
X ESFONC=53, /* FAM OP NOT COMPLETE - */
X EENPHA=S54, /* NO PHANTOMS AVAILABLE - */
X E$ROOM=55, [*x NO ROOM - */
X E3WTPR=56, /* DISK WRITE-PROTECTED - */
X E$ITRE=57, /* ILLEGAL TREENAME - * [
X ESLAST=57 /* THIS ***MUST*** BE L[AST - %/
X /% */
X [x */

X [hkkkhhkhhhkhhhkh kb hkhbhkkhkkddkdhd ok hd dkdkdhhik Ahkhkhkhkhkhkhkkhkhkhkkhk /[

LIST

NEW

AND MODIFIED PRIMOS IV FACILITIES

PRIMCS IV, REVISION 16.2 PAGE 23

. —— . - - e A e am o ——

AT REVISION 16, PRIMOS IV HAS BEEN MODIFIED TO SUPPORT SYSTEMS
WITH UP TO0 EIGHT MEGABYTES OF MEMORY.

S e m sl cm e SR am mm a G we——— —-—

THE PRIMOS IV OPERATING SYSTEM KERNEL HAS A BUILT-IN VERSION OF

THE VvPSD DEBUGGER. IT IS LOADED AS PART OF SEGMENT NUMBER 4, AND
A TOEHOLD TO ENTER IT IS LOCATFD AT '600 IN SEGMENT 14. THE
TOEHOLD SERVES TO ENTER 64V MODE AND ~ LOAD DTARO BEFORE

TRANSFERRING CONTROL TO VPSD. THUS, AFTER AN OPERATING SYSTEM
CRASH, THE MACHINE CAN BE MASTER-CLEARED, '"600 ENTERED IN THE
SWITCHES, AND THE START SWITCH DEPRESSED IN LOAD MODE. VPSD WILL

BE ENTERED AND WILL BE ABLE TO ACCESS ANY KERNEL SEGMENT.
SEGMENTS NOT IN DESCRIPTOR TABLE 0, HOWEVER, CANNOT BE DIRECTLY
ACCESSED BY VPSD.

THIS VERSION OF VPSD IS USABLE ONLY IF THE PAGES OF SEGMENT 4
THAT CONTAIN VPSD ARE WIRED (MADE NON-PAGABLE, ALSO KNOWN AS

LOCKED).

VPSD_BAUD_ RATE

THE VPSD SUPPLIED AS PART OF PRIMOS Iv IS SET TO RUN THE SYSTEM
TERMINAL AT 300 BAUD. IN SOME CASES, 1T MAY BE DESIRABLE TO

CHANGE THIS RATE, vPSD, ITSELF, HAS THREE CONTROL WORDS
ASSEMBLED - INTO IT THAT AFFECT THE BAUD RATE OF THE SYSTEM
TERMINAL. THE VALUES OF THESE THREE WORDS CAN BE PATCHED IF THE

SYSTFM TERMINAL CANNOT RUN AT 300 BAUD, OR IF A DIFFERENT BAUD
RATE IS DESIRED.

VPSD IS LOADED AS PART OF SEGMENT NUMBER 4 STARTING AT A WORD
OFFSET OF 200CCOCTAL). THE THREE WORDS TO PATCH ARE LOCATED
STARTING AT 2004COCTAL) IN SEG 4. THE FOLLOWING TABLE GIVES THE

VALUES OF THESE WORDS FOR VARIOUS BAUD RATES:

BAUD RATE 2004 2005 2006

110 110 27 74000

DEFAULT 300 1010 76 34000
120C 2010 373 34000

9600 3410 3735 34000

THESE WORDS CAN BE PATCHED FROM THE CONTROL PANEL, OR THEY CAN BE
PATCHED AFTER THE SYSTEM IS BROUGHT UP BY USING THE SHARE COMMAND
AND THE VPSD COMMAND.

NEW AND MODIFIED PRIMOS IV FACILITIES

PRIMOS IV, REVISION 16.2 PAGE 24

- ——— - — - i S = A

2.4.1 REMOTE DISK ACCESS

1T IS NOW POSSIBLE TO PERMIT OR DENY ACCESS TO LOCAL FILE SYSTEM
DISK PARTITIONS FROM SPECIFIC OR ALL REMOTE NODES. (SEE SECTION

3 FOR DETAILS ON THE NEW INTERNAL COMMAND 'REMOTE'.)

2.4.2 EXPANDED FUNCTIONALITY

FAM SUPPORTS THE EXPANDED NUMBER OF FILE UNITS AND REMOTE NODES

AVAILABLE AT REVISION 16 OF PRIMOS IV.

2.4.3 BETTER MULTIPLEXING OF REMOTE USERS

FAM NOW RELEASES ANY OF ITS OWN INTERNAL RESQOURCES IT HAS

RESERVED FOR A REMOTE USER WHEN THAT USER NO LONGER HAS FILE
UNITS OPEN OR A VALID HOME/CURRENT ATTACH POINT ON THAT SYSTEM.
THIS ENABLES FAM TO SUPPORT MORE REMOTE ACTIVITY WITHOUTY

EXHAUSTING RESOQURCES.

R Rl BN N N N Y P AP Y S T Ry

AT REVISION 16 OF PRIMOS IV, A FEATURE HAS BEEN ADDED THAT ALLOWS
INDIVIDUAL PARTITIONS OF A STARTED DISK TO BE SOFTWARE WRITE

PROTECTED. THE PROTECTION IS ACHIEVED 8Y DETERMINING THE NATURE
OF THE FILE OPERATION ON A DISK PARTITION AT THE TIME THE FILE IS
ACCESSED, AND THE EFFECT OF THAT OPERATION ON THE DISK. IF THE

FINAL EFFECT OF THF OPERATION IS TO MODIFY THE DISK, THE
OPERATION IS NOT PERMITTFD.

FOR EXAMPLE, PROTECTION CHECKING WOULD BE PERFORMED FOR A CNAME
COMMAND WHFN THE FILE IS ACCESSED. IF THE ATTEMPTED FILE
OPERATION WAS TO READ FROM THE FILE, THE PROTECTION CHECKING

WOULD OCCUR WHEN THE FILE WAS OPENED, NOT FOR EVERY READ
PERFORMED. IN ESSENCE, AS FEW CHECKS AS POSSIBLE ARE MADE TO
PROVIDE THE NECESSARY PROTECTION. FOR MORE DETAILS, SEE THE

ADDISK AND STARTUP COMMANDS IN SECTION 3.

e g e e ey sy oty o s B o e — e o i o e e ev

THE DISK ERROR RECOVERY SCHEMES HAVE BFEEN MODIFIED TO CORRECT
PROBLEMS OCCURING DURING A WARM START. FOR COMPLETE DETAILS, SEE

SECTION 9.

NEW AND MODIFIFD PRIMOS IV FACILITIES

PRIMOS IV, REVISION 1é6.7 PAGE 25

PR 2 8- PAASAS —DED. L GAS LS ASAS APELEY S A P I SAPE -2 S 3- TR AT S AR AP N- LS4

AT REVISION 16 OF PRIMOS, ALL INTERNAL PRIMOS COMMANDS THAT

FORMERLY ACCEPTED A FILENAME AS THEIR FIRST ARGUMENT, NOW ACCEPT

A TREENAME AS WELL. THE EFFECT OF THIS EXTENDED FUNCTIONALITY IS
A MORE GENERAL ENVIRONMENT FOR PROGRAM DEVELOPMENT UNDER PRIMOS.
THESE COMMANDS ARE:

ATTACH BINARY CLOSE CNANE
COMINPUT COMOUTPUT CREATE DELETE
INPUT LISTING OPEN PHANTOHM
PROTEC RESTORE RESUME SAVE
SHARE

TERMINOLOGY

- S —— — ———

TREENAME: THE COMPLETE DESCRIPTION OF A DIRECTORY TREE, STARTING

WITH A SPECIFIED DISK VOLUME OR PARTITION AND ENDING WITH A
FILENAME. THE GENERAL FORMAT OF A TREENAME IS:

PATHNAME>FILENAME

NOTE: BLANKS ARE NOT ALLOWED IN TREENAMES EXCEPT FOR
SEPARATION OF DIRECTORY NAMES AND PASSWORDS. TREENAMES WHICH
CONTAIN PASSWORDS MUST BE QUOTED.

PATHNAME: . A CHAIN OF DIRECTORIES OPTIONALLY STARTING WITH THE

-————————

DISK VOLUME NAME AND ENDING WITH THE NAME OF THE DIRECTORY

CONTAINING THE FILES TO RE ACCESSED. THE FORMAT OF A PATHNAME
IS:

[<VOLUME> 1]
L <LDISK> 1 DIRECTORY-CHAIN
[<*>]

ONLY ONE OF THE DISK SPECIFIERS <VOLUME>, <LDISK>, OR <*> MAY BE
PRESENT. THE ANGLE BRACKETS ARE REQUIRED FOR DISK SFECIFICATION.

THE DISK SPECIFIERS ARE INTERPRETED AS FOLLOWS:

<VOLUME> IS THE NAME OF A DISK.

<LDISK> IS THE LOGICAL NUMBER OF A DISK (IN OCTAL).
<x> IS THE DISK OF THE CURRENT ATTACH POINT.

DIRECTORY-CHAIN: PART OF A PATHNAME; A SERIES OF DIRECTORIES

—— - ——— - — " —— -

AND OPTIONAL PASSWORDS SEPARATED BY THE SYMBOL *>%, AS IN:

DIRECTORY [PASSWORD] [>SUBDIRECTORY L[PASSWORD] 1 ...

JF THE FIRST ELEMENT OF A DIRECTORY-CHAIN IS AN **%_IT IS

INTERPRETED AS THE MOST RECENTLY SET HOME DIRECTORY. THE
ASTERISK CONVENTION FOR HOME DIRECTORY MUST NOT BE SPECIFIED IF A

INTERMAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, RCVISION 16.2 FAGE 26
LOGICAL DISK IS SPECIFIED.

DIRECTORY: A DIRECTORY MWAY BE THE W#fD, A UFD, OR A SUB-UFD.
DIRECTORIES WITH NANES 1IN THE MFD ARE UFDS; ALL OTHER
DIRECTORIES ARE SUB-UFDS.

NOTE: IF A TREENAME CONTAINS A PASSWORD(S), IT MUSI BE ENCLOSED

WITHIN SINGLE QUOTATION MARKS AS IN: 'MFD XXXXXX>MYUFD'.

IN ALL OTHER CASES, A TREENAME NEED NOT BE SPEC

IFIED

WITHIN SINGLE QUOTATION MARKS AS IN:
MYUFD>MYSUBUFD>TEST.LST. NOTE THAT BLANKS DO NOT APPEAR
IN THIS TREENAME.
THE FOLLOWING DESCRIBES THE EXTENDED SYNTAX AND ILLUSTRATES SOME
EXAMPLES FOR EACH OF THE ABOVE COMMANDS:
ATTACH TREENAME [KEY]
ATTACHES TO TREENAME AS CURRENT DIRECTORY. NONOWNER
PASSWORDS FAY BE GIVEN. DEFAULT = SET AS HOME DIRECTORY.
EXANPLE: A <1>MYUFD>MYSUBUFD>BINS
ATTACHES TO THF SUB-UFD 'BINS' IN THE DIRECTORY-CHAIN
'MYUFD>MYSUBUFD'. THE UFD 'MYUFD' IS SEARCHED FOR IN THE
MFD OF LOGICAL DISK 1. VBINS' RECOMES THE HOME DIRECTORY.
EXAMPLE: A "*>LISTINGS SECRET’
ATTACHES TO THE SUB-UFD 'LISTINGS' IN THE HOME DIRECTORY.
THE SUB-UFD 'LISTINGS' HAS A PASSWORD OF 'SECRET'.
'LISTINGS' BECOMES THE HOME DIRECTORY.
EXAMPLE: A MYUFD>MYSUBDIR>BACKUPS 1/1
ATTACHES 71O THE SUB-UFD TBACKUPS' IN THE DIRECTORY-CHALN
'MYUFD>MYSUBDIR'. 'MYUFD' IS 1IN THE CURRENT DIRECTORY
ATTACHED TO. 'BACKUPS' DOES NOT BECOME THE HOME DIRECTORY.
EXAMPLE: A <REV16>MFD
ATTACHES TO THE MED OF THE DISK WITH 'REV16*' AS 1TS VOLUME
NAME AS NONOWNER. THE 'MFD' DOES NOT HAVE A NONOWNER
PASSWORD.
EXAMPLE: A <MD16AASLIB 17177777
ATTACHES TO THE UFD 'LIP' ON THE DISK WITH 'MD16A1' AS ITS
VOLUME NAWE. THE UFD FfLIB' DOES NOT BECOME THE HOME
DIRECTORY.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, RFVISION 16.2 FAGE 27

BINARY TREENAME

OPENS TREENAME FOR WRITING ON FILE UNIT 3 FOR OUTPUT.
EQUIVALENT TO TO THE COMMAND 'OPEN TREENAME 3 2°.

EXAMPLE: B MYUFD>MYSUBUFD>TEST.BIN

THE FILE 'TEST.BIN' IS OPENED ON FILE UNIT 3 FOR WRITING IN

THE DIRECTCRY-CHAIN 'MYUFD>MYSUBUFD'. ALL MFDS (STARTING
WITH LOGICAL DISK 0O) ARE SEARCHED FOR THE UFD NAMED °'MYUFD'.

CLOSE CTREENAME] [FILE-UNITY ... CL[FILE-UNIT]

CLOSES TREENAME AND/OR FILE UNITS.

EXAMPLE: C MYUFD>L TEST

THE FILE *L_TEST®' IN THE UFD 'MYUFD' IS CLOSED. ALL MFDS
(STARTING WITH LOGICAL DISK 0) ARE SEARCHED FOR THE UFD

NAMED *MYUFD'.

CNAME TREENAME FILENAME

CHANGES THE LAST NAME IN TREENAME TO FILENAME. REQUIRES
OWNER RIGHTS. THE NEW NAME MUST BE A FILENAME; OTHERWISE
ONE WOULD FE MOVING FILES,

EXAMPLE: CN TOOLS>FORTRAN>TEST OLDTEST

P-SARARSS SN -2

THE FILE NAMED 'TEST' IN THE DIRECTORY-CHAIN 'TOOLS>FORTRAN?®
IS CHANGED TO 'OLDTEST'. ALL MFDS (STARTING WwITH LOGICAL
DISK 0) ARE SEARCHED FOR THE UFD NAMED 'TOOLS'.

EXAMPLE: CN *MEMOS>CONFIDENTIAL SECRET>CURRENT' OLD

THE FILE NAMED "CURRENT! IN THE DIRECTORY-CHAIN
'MEMOS>CONFIDENTIAL®' IS CHANGED TO 'OLD'. THE SUB=UFD
"CONFIDENTIAL' HAS A PASSWORD OF 'SECRET'. ALL MFDS

(STARTING WITH LOGICAL DISK 0) ARE SEARCHED FOR THE UFD
NAMED '*MEMOS'.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16.2 PAGE 28

COMINPUT TREENAME [FILE-UNIT?

READS COMMAND INPUT FROM TREENAME INSTEAD OF TERMINAL.

EXAMPLE: CO MYUFD>MYSUBDIR>C TEST1 33

COMMAND INPUT IS SWITCHED TO THE FILE *C_TEST1' 1IN THE
DIRECTORY-CHAIN '"MYUFD>MYSUBDIR' ON FILE UNIT 33 (0CTAL).

ALL MFDS (STARTING WITH LOGICAL DISK 0) ARE SEARCHED FOR THE
UFD NAMED 'MYUFD'. NOTE THAT WRHILE THE NEXT COMMAND COMES
FROM THF FILE 'YC_TEST1', THE ATTACH POINT OF THE PROCESS

REMAINS UNCHANGED.

COMOUTPUT TREENAME

SENDS OUTPUT STREAM TO SPECIFIED TREENAME ON THE COMOUTPUT
FILE UNIT.

EXAMPLE: COMO ¥>UTOPIA&4>TESTRUN

THE OQUTPUT STREAM IS SENT T0 THE FILE °*TESTRUN® IN THE

DIRECTORY-CHAIN T*>UTOPIABALTY. THE SUB=UFD ‘YUTOPIAB4' IS
CONTAINED IN THE DIRECTORY WHERE HOME WAS MOST RECENTLY SET.

CREATE TREENAME

CREATES A NEW UFD IN THE DIRECTORY SPECIFIED BY TREENAME.

EXAMPLE: CR '<1>MFD XXXXXX>ACCOUNTS>RECEIVABLE'

THE SUB-UFD 'RECEIVARLF' IS CREATED IN THE UFD *ACCOUNTS'.

THE UFD *ACCOUNTS' IS IN THE *MFD' OF LOGICAL DISK 1. THE
MFD HAS A PASSWORD OF "XXXXXX'.

DELETES A FILE OR EMPTY DIRECTORY.

EXAMPLE: DELETF LISTINGS>TEST.FTN.LST

THE FILE NAMED 'TEST.FIN_.LST' IS DELETED FROM THE UFD

VLISTINGS'. ALL MFDS (STARTING WITH LOGICAL DISK 0) ARE
SEARCHED FOR THE UFD NAMED 'LISTINGS'.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, RFVISION 16.2 PAGE 29

INPUT TREENAME

OPENS TREEMAME FOR READING ON FILE UNIT 1. EQUIVALENT TO
THE COMMAND 'OPEN TREENAME 1 1%,

EXAMPLE: I <#*>INVENTORY>ONHAND>DATA

THE FILE NAMED 'DATA? IN THE DIRECTORY-CHAIN

"INVENTORY>ONHAND' IS OPENED FOR READING ON FILE UNIT 1.
THE UFD '"INVENTORY'®' IS SEARCHED FOR IN THE MFD OF THE
CURRENT DISK.

LISTING TREENAME

OPENS TREENAME FOR WRITING ON FILE UNIT 2. EQUIVALENT TO

THE COMMAND 'OPEN TREENAME 2 2'.

EXAMPLE: t <BACKUP>PAYROLL>THIS WEEK

THE FILE NAMED ‘THIS_WEEK' IN THE UFD ‘'PAYROLL* IS OPENED
FOR WRITING ON FILE UNIT 2. THE UFD *PAYROLL* IS SEARCHED

FOR IN THE MFD OF THE DISK WITH THE VOLUME NAME OF 'BACKUP'.

OPEN

TREENAME UNIT KEY

OPENS A TREENAME ON THE SPECIFIED UNIT WITH A DISPOSITION
SPECIFIED RY KEY.

EXAMPLE: O MYUFD>MYSURFD>MYDATA 1 1

THE FILE 'MYDATA' IN THE DIRECTORY 'MYUFD>MYSUBFD' IS OPENED

ON FILE UNIT 1 FOR READING. ALL MFDS (STARTING WITH LOGICAL
DISK 0) ARE SEARCHED FOR THE UFD NAMED *MYUFD'.

PHANTOM TREENAME [FILE-UNIT]

RUNS THE SPECIFIED TREENAME AS A PHANTOM USER. THE LAST
ELEMENT IN THE TREENAME IS A COMMAND-INPUT FILE.

EXAMPLE: FH #>PRODUCTION>DAILY.CO 52

RUNS THE COMMAND-INPUT FILE *DAILY.CO* IN THE
DIRECTORY=-CHAIN '*>PRODUCTION' AS A PHANTOM USER. THE
SUB-UFD 'PRODUCTION' IS CONTAINED IN THE DIRECTORY WHERE

HOME WAS MOST RECENTLY SET. THE _PHANTOM!'S_HOME_UED_IS

'PRODUCTION'. FILE UNIT 52 (OCTAL) IS USED AS THE

—— e — - ——————

COMMAND-INPUT FILE UNIT.

INTERNAL COMMAND MCDIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16.2 PAGE 30

PROTEC TREENAME [OWNFR-RIGHTS [NONOWNER-RIGHTS1]

SETS PROTECTION RIGHTS ON TREENAME.

EXAMPLE: FPRO <OLD>MYUFD>SECRET 0 O

SETS PROTECTION RIGHTS TO0 THE FILE PSECRET' IN THE UFD
'MYUFD' TO NO ACCESS FOR BOTH THE OWNER AND NONOWNER. THE

UFD YMYUFD' IS SEARCHED FOR IN THE MFD OF THE DISK WITH THE
VOLUME NAME OF 'OLD'.

RESTORE TREENAME

RESTORES THE RUNFILE CONTAINED IN TREENAME INTG MEMORY.

EXAMPLE: REST #*>*TEST

RESTORES THE RUNFILE *TEST IN THE MOST RECENTLY SET HOME

DIRECTORY TO HMEMORY. THIS IS EQUIVALENT TO THE COMMAND
YVREST *TEST'.

RESUME TREENAME [PJ FAJ [BJ [x] EKEYS]

RUNS (RESTORES AND STARTS) THE EXTERNAL PROGRAM CONTAINED IN
TREENANME.

EXAMPLE: R CMDNCO>DATE

- ——

RUNS (RESTORES AND STARTS) THE EXTERNAL PROGRAM NAMED 'DATE!
IN THE UFD 'CMDNCO'. ALL MFDS (STARTING WITH LOGICAL DISK
0) ARE SEARCHED FOR THE UFD NAMED °'CMDNCO'.

TREENAME START-ADDRFSS END-ADDRESS [Al [BJ [X] LKEYSI]

SAVES MEMORY IMAGE/CONTENTS FROM THE SPECIFIED START-ADDRESS

TO END-ADDRESS AS TREENAME. DO NOT USE WITH SEG FORMAT (64V
OR 32I) RUNFILES.

EXAMPLE: SA YMFD XXXXXX>MYUFD>*NEwWw' 100 177777

SAVES THE MEMORY IMAGE IN LOCATIONS 100-177777 (OCTAL) AS

THE FILE F**NEW' IN UFD °*MYUFD'. THE UFD °*MYUFD' 1S 1IN THE
'MFD* OF LOGICAL pISK 0. THE 'MFD' HAS A PASSWORD OF
PXXXXXX .

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16.2 PAGE 31

SHARE TREENAME SEGMENT-NUMBER LCSEGMENT-DESCRIPTOR-WORD]J

SHARES TREENAME IN THE SPECIFIED SEGMENT-NUMBER. THIS IS AN
OPERATOR COMMAND, AND MUST RE ISSUED FROM THE SYSTEM
CONSOQLE.

EXAMPLE: SHA SYSTEM>UIZ000 2000

THE FILE 'UI2000' IN THF UFD 'SYSTEM' IS PLACED INTO SEGMENT
20040. ALL MFDS (STARTING WITH LOGICAL DISK 0) ARE SEARCHED
FOR THE UFD NAMED ‘SYSTEM',.

3.2 _ADDISK COMMAND MODIFICATION

THE ADDISK COMMAND HAS BEEN EXTENDED TO ALLOW A DISK PARTITION TQO
BE SOFTWARE WRITE-PROTECTED.

A DISK IS WRITE-PROTECTED BY SPECIFYING PROTECT IN THE ADDISK
COMMAND AS FOLLOWS:

ADDISK PROTECT DEVNO1 [DVNOZ2 ... DVNOO]

PROTECT MAY ONLY BE SPECIFIED FOR DISKS WHICH ARE ADDED LOCALLY,
AND DOES NOT GOVERN THE RIGHTS OF REMOTELY ADDED DISKS. REMOTELY
ADDED DISKS ASSUME THE WRITE-PROTECTION STATUS OF THE LOCAL

SYSTEM.

THE STATUS OF THE WRITE-PROTECT FEATURE MAY BE CHANGED FOR A

GIVEN PARTITION BY RESPECIFYING THE STARTUP QR ADDISK COMMAND
WITH OR WITHOUT PROTECT.

IF AN SUBSEQUENT ADDISK COMMAND IS I1SSUED FOR THE SAME DISK, AND
PROTECT 1S NOT SPECIFIED, THE WRITE-PROTECT FEATURE IS DISABLED.
(AN ADDISK PROTECT TO AN ALREADY PROTECTED DISK DOES NOT CHANGE

THE PROTECTION.) 1F AN ADDISK PROTECT COMMAND IS ISSUED FOR A
DISK THAT DOES NOT HAVE PROTECTION ENABLED, IT IS IMPORTANT THAT
THE DISK BF SHUTDOWN FIRST, TO INSURE THAT THE DISK IS NOT

INADVERTENTLY WRITTEN UPON.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16.2 PAGE 32

e T e v . S G - Y S s e S e ——— e -

THE LOGOUT COMMAND HAS BEEN MODIFIED SO THAT WHEN *LOGOUT ALLY 1S
SPECIFIED FROM THE SYSTEM CONSOLE (USER 1) THE REMOTE FILE ACCESS
MANAGER (FAM) IS NOT LOGGED CUT IF IT IS A RUNNING PROCESS.

e - - ——— - . - —— T e 5 W G w. - S -

THE LOOK COMMAND HAS BEEN MODIFIED SO THAT A *REALLY?' PROMPT IS
ISSUED FOR ANY LOOK COMMAND WHOSE REQUEST IS CONSIDERED TO BE
RISKY OR DANGEROUS TO SYSTEN INTEGRITY. (IF THE LOOK COMMAND

INVOLVES AN ATTEMPT TO DO A FROM FROM A SEGMENT THAT DOES NOT
EXIST, AN ATTEMPT TO DO A TO TO A SEGMENT THAT DOES EXIST, OR
ATTEMPTS TO MAP EITHER SHARED OR STACK SEGMENTS WITH WRITE

PERMISSION, THE COMMAND IS CONSIDERED RISKY OUR DANGEROUS TO
SYSTEM INTEGRITY.) A SIMPLE 'YES' WILL ALLOW THE OPERATION TO
PROCEED.

o e i 2 o o T - - ————— > - - — -

THE MAXUSR COMMAND HAS BEEN MODIFIED SO THAT THE VALUE OF THE
VARIABLE MAXUSR IS IGNORED FOR PHANTOMS STARTED FROM THE SYSTEHW
CONSOLE (USER 1).

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16.2 PAGE 33

e e s o ———— —— . S~ ———_— — — o " G- —— — — o -

THE PHANTOM COMMAND HAS REEN MODIFIED SO THAT THL PRIORITY OF A
SPAWNED PROCESS HAS THE SAME PRICRITY AS THE SPAWNING PROCESS.
IF THE SPAWNING PROCESS IS PROCESS 1 (THE SYSTEM CONSOLE), THE

PRIORITY IS SET T0 1.

3.7 REMOTE COMMAND

THE REMOTE COMMAND ENABLES USER 1 (THE SYSTEM CONSQLE USER) TO
PERMIT OR DENY ACCESS TO LOCAL FILE SYSTEM DISK PARTITIONS FROM

SPECIFIC OR ALL REMOTE NODES.

REMOTE PERMIT <OPTION>

DENY

PERMIT PERMITS ACCESS TO SPECIFIC OR ALL LOCAL ©DISKS BY

SPECIFIC OR ALL REMOTE NODES.

DENY DENIES ACCESS TO SPECIFIC OR ALL LOCAL DISKS BY

SPECIFIC OR ALL REMOTE NODES.

OPTICNS CAN BE:

NODENAME DVNO1 [DVNOZ2 ... DVNO9]
NODENAME —ALL

=NET DVNO1 [DVNOZ2 ... DVNO9]
=NET -ALL

THE FOLLOWING EXAMPLES ILLUSTRATE HOW THIS COMMAND IS USED TO
PERMIT ACCESS TO SPECIFIC OR ALL LOCAL DISKS.

REMOTE PERMIT NODENAME DVNOT L[DVNOZ2 ... DVNOQ9]

THIS COMMAND PERMITS NODE NODENAME TO STARTUP OR ADDISK ANY OF

THE LOCAL PHYSICAL DISK DEVICFS DVNO1 THROUGH DVNOZ. AT LEAST

o ——— — — ——

DYNOT MUST BE SPECIFIED. ALL SPECIFIED LGCAL DISK PARITITIONS
MUST ALREADY RE STARTFD-UP WITH A PREVIOUS ADDISK OR STARTUP

COMMAND.

REMQTE PERMIT NODENAME -ALL

THIS COMMAND PERMITS NODE NODENAME TO STARTUP OR ADDISK ALL

PRESENTLY STARTED UP LOCAL DISK PARTITIONS. IT HAS NO EFFECT ON

LOCAL PARTITIONS ADDED AFTER THIS COMMAND IS EXECUTED.

REMOTE PERMIT ~-NET DVNO1 [DVNOZ2 ... DVNOOI

THIS COMMAND PERMITS ALL NETWORK NODES CONFIGURED TO ACCESS THE
SPECIFIED LOCAL DISK PARTITIONS.

REMOTE PERMIT -NET -ALL

THIS COMMAND PERMITS ALL NETWORK NODES TO ACCESS ALL PRESENTLY
STARTED UP DISK PARITIONS.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMCS 1v, REVISION 16.2 PAGE 34

PERMIT AND DENY AFFECT ONLY DISK PARTITIONS ALREADY STARTED UP AT
THE TIME OF THE RENMOTE COMMAND, DISKS SHUT DOWN AND STARTED UP
AGAIN WILL GET THE SYSTEM DEFAULT PERMISSIONS UNTIL AN EXPLICIT

REMOTE PERMIT OR REMOTE DENY COMMAND CHANGES THEM. THE SYSTEM
DEFAULT PERMISSIONS ARE DETERMINED FROM THE FILE NETCON WHICH IS

CREATED BY NETCFG. THE REMOTE PERMIT COMMAND WILL NOT

AUTOMATICALLY ADD A DISK TO ANY SYSTEM. THE REMOTE DENY COMMAND
WILL NOT REVOKE A SYSTEM'S EXISTING ACCESS TO A DISK.

3.8_STARTUP_COMMAND_MODIFICATION

e e e S S S v — ———— - . - - o - - -

THE STARTUP COMMAND HAS BEEN EXTENDED TO PERMIT A DISK TO BE

SOFTWARE WRITE=-PROTECTED.

A DISK IS WRITE-PROTECTED BY SPECIFYING PROTECT IN THE STARTUP

COMMAND AS FOLLOWS:

STARTUP PROTECT DVNO1 L[DVNOZ ... DVNO9]

PROTECT MAY ONLY PBRE SPECIFIED FOR DISKS WHICH ARE STARTED
LOCALLY, AND DOES NOT GOVERN THE RIGHTS OF REMOTELY ADDED DISKS.

REMOTELY ADDED DISKS ASSUME THE WRITE-PROTECTION STATUS OF THE
LOCAL SYSTEM.

THE STATUS OF THE WRITE-PROTECT FEATURE MAY BE CHANGED FOR A
GIVEN PARTITION BY RESPECIFYING THE STARTUP OR ADDISK COMMAND
WITH OR WITHOUT PROTF(CT.

IF AN SUBSEQUENT STARTUP COMMAND IS ISSUED FOR THE SAME DISK, AND
PROTECT IS NOT SPECIFIED, THE WRITE-PROTECT FEATURE 1§ DISABLED.

(AN STARTUP PROTECT TO AN ALREADY PROTECTED DISK DOES NOT CHANGE
THE PROTECTION.) If AN STARTUP PROTECT COMMAND IS ISSUED FOR A
DISK WHICH DOES NOT HAVE PROTECTION ENABLED, IT IS IMPORTANT THAT

THE DISK BE SHUTDOWN FIRST, TO INSURE THAT THE DISK IS NOT
INADVERTENTLY WRITTEN UPON.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16.2 PAGE 35

PR 3. SiLFLY LRI _J GEIg LY N AC-SF DS LIS AL LY LY T T PR LR

THE FOLLOWING ARE PROBLENMS WHICH HAVE BEEN CORRECTED FOR REVISION
16 OF PRIMOS., WHERE APPLICABLE, TAR #'S ARE INLCUDED.

CALLS TO SLEEPS$ FOR LONG PERIODS OF TIME RESULTED IN INACCURATE

DELAYS IF SYSTEM USAGE WAS HEAVY.

4.2 CONFIG_COMMAND NEEDED_IN_CONFIG_FILE

-3 AP TP Py P S EJNSAY LS PISLE P B 29 X 2R SLYN -——

THE CONFIG COMMAND WAS NOT OPTIONAL IF NETWORKS WERE CONFIGURED.

THE SYSTEM WOULD FAIL TO COLD START.

A USER'S LOGIN COMMAND WAS SOMTIMES DELAYED FOR AS LONG AS ONE

MINUTE.

- —— —— - ————— g~ —— —-—— o -~

USER-RING (RING 3) PROGRAMS (COULD USE THE RING O PRIVILEGED

RETURN OF ESBPAS (BAD PASSWORD) FROM ATCH$$. THIS ERROR ALLOWED
USERS T0O WRITE A PROGRAM WHICH ITERATED THROUGH ALL POSSIBLE
FASSWORDS IN FINITE AMOUNT OF TIME.

4.5 WRONG L INE NUMBER IN STATUS COMMAND

THE STATUS COMMAND PRINTED THE INCORRECT LINE NUMBER WHEN THE
USER'S AMLC LINE NUMBER WAS GREATER THAN THE NUMEER OF CONFIGURED

TERMINAL USERS. (TAR # 12860)

CALLS TO ATCH$$s TO ATTACH TO HOME DIRECTORY FAILED If THE HOME

DIRECTORY WAS ON A REMOTE DISK AND THE LOGICAL DEVICE ARGUMENT
WAS K$ALLD (100000 OCTAL).

CALLS TO T$CMPC AND T$PMPC (CARD READER=PUNCH) COULD RESULT IN
SPURIOUS 'NO MPC' ERROR MESSAGES. (TAR # 25725)

CORRECTED REVISION 15.1, 15.2 PROBLEMS

PRINOS TV, REVISION 16.2 PAGE 36

4.8 GARBLED_COLD_START_MESSAGE

——— e — — T~ _—— — T ———— T ———n — — ——— —— e Soe - ——

AT COLD START, THE PRIMOS HEADER MESSAGE COULD SOMETIMES BE
GARBLED DUE TO INCORRECT BAUD RATE SETTING.

SETTING THE BAUD RATE OF THE SYSTEM CONSOLF TO 9600 BAUD VIA THE
B REGISTER SETTING OF *COLDS CAUSED SYSTEM CRASH DURING (COLD
START.

4. 10 _REMOTE LOGIN

THE FORCED LOGOUT OF A USER WHO WAS REMOTELY LOGGED IN CAUSED
ANOMALOUS BEHAVIOUR.

AN ATTACH TO A NONEXISTANT UFD ON A REMOTE DISK INCORRECTLY
RETURNED THE ERROR CODE F$IREM INSTEAD OF ESLFNTF.

IF THE COMOUTPUT UNIT WAS OPEN, AND THE SYSTEM MESSAGE 'BAD
RTNREC' «AS ISSUED, THE SYSTEM WOULD HALT IN N1LOCK.

OTHER PROBLEMS RELATED TO THE SYSTEM HANGING IN N1LOCK HAVE BEEN
CORRECTED.

PLUL L Q. B A L Y

A USER SUPPLIED LOC POINTER WAS NOT BEING WEAKENED FOR CALLS TO
T$AMLC, TS$CMPC, TSLMPC, TEPMPC, AND T3EVG.

A USER ATTEMPTING TTY INPUT VIA 'YINA 4! FAILED 70 GET
'INTERACTIVE' TIMESLICE.

4,15 _COMINPUT

THE COMINPUT COMMAND INCORRECTLY TREATED -FILENAME AS THE
COMINPUT FILE, WHERE "FILENAME™ WAS THE NAME OF A FILE.

CO TTY DID NOT CHECK TO SEE IF THE COMINPUT UNIT WAS OTHER THAN
UNIT 6. (TAR # 2547¢, RUS564)

CORRECTED REVISION 15.1, 15.2 PROBLEMS

PRIMCS IV, REVISION 16.2 PAGE 37

—— o —— s i - . e e S v i - -

PRIMOS IV WOULD INCORRECTLY ACCEPT ADDISK, DISK, AND ASSIGN
COMMANDS ON OVERLAPPING DISK PARTITIONS.

4,17 _SETIME

THE SETIME COMMAND WOULD FAIL IF A DISK ERROR OCCURRED WHILE
WRITING THE COLD START MESSAGE TO THE LOGREC FILE.

-_—— . - - e .

THE LOGLOG DIRECTIVE OF CONFIG DID NOT WORK AS PREVIOUSLY
DOCUMENTED.

—— e . W N S Gen o

THE UNASSIGN COMMAND DID NOT WAIT UNTIL THE BUFFER WAS CLEARED
FOR A CARD READER, CARD PUNCH, PAPERTAPE KREADER/PUNCH, ETC.

- ——_— . T e e . - fme

THE PACKNAME IN THE LOGREC FILE MAY HAVE HAD A NONPRINTING
CHARACTER IF THE NAME HAD AN ODD NUMBER OF CHARACTERS.

WHEN OPERATING ON A REMOTE ©DISK, NONOWNERS GF A UFD WERE
ILLEGALLY ALLOWED TO CREATE NEW FILES.

——— . - -

THE MAXSCH COMMAND INCORRECTLY DEFAULTED TO C INSTEAD OF 3. (TAR
26959)

—— — A . - S e W - - -

THE COMMAND 'MESSAGE ALL NOW' COULD HANG THE SYSTEM CONSOLE FOR
LONG PERIODS OF TIME. COMMAND PROCESSING HAS BEEN CHANGED SO
THAT THE SYSTEM ONLY WAITS A SHORT PERIOD OF TIME FOR ROOM IN THE

TTY OUTPUT BUFFERS. IF A MESSAGE CAN NOT BE PLACED IN A BUFFER,
THE SYSTEM CONSOLE USER (OPERATOR) IS INFORMED AS TO WHICH USERS
DID NOT RECEIVE THE MESSAGE. (TAR # 11324)

CORRECTED REVISION 15.1, 15.2 PROBLEMS

PRIMOS IV, REVISION 16.2 PAGE 38

—— . ———— o ———— - — - - -

PHANTOMS WHOSE COMMAND FILES WERE ON REMOTE DISKS FAILED TO
LOGIN, AND NO ERROR WAS SENT TO THE SPAWNING PROCESS. THIS
OPERATION NOW RESULTS IN THE ERROR ESIREM (ILLEGAL REMOTE

REFERENCE) IF THE PHANTOM CAN NOT BE STARTED.

£.25_SKS_604

— R R e R e - - -

THE 'SKS 604' INSTRUCTION (SKIP ON TRANSMITTER READY) ALWAYS

SKIPPED 1IF THE USER WAS A PHANTOM. THIS PREVENTED PHANTOMS FROM
RUNNING MULTIPLE DEVICES (SERIAL LINE PRINTERS, ETC.) WHICH WERE
CONNECTED TO THE SOC OR OPTION—A CONTROLLER. (TAR # 20022)

4.26 DELAY

THE DELAY COMMAND RESET TERMINAL CHARACTERISTICS BEFORE ALL OF
THE OUTPUT BUFFER WAS FLUSHED CAUSING SOME CHARACTERS TO BE LOST.

(TAR # 24726)

4.27 _XOFF

IF TERMINAL OUTPUT WAS TURNED OFF, AND A USER WAS FORCED OFF

(LOGOUT OR DISCONNECT COMMAND), THAT USER TERMINAL WCOULD HANG AND
COULD NOT BE LOGGED OUT. (TAR # 24726)

IF SPASSS WAS CALLED WHILE ATTACHED 7O A REMOTE UFD, A USER THAT

HAD OWNER FERMISSION HAD THE RIGHTS CHANGED TO THAT OF NONOWNER.
FAM NOW RETAINS THE NEW PASSWORD TO USE IN RE-ATTACHING TO THAT
UFD FOR SUBSEGUENT OPERATIONS,

CORRECTED REVISION 15.1, 15.2 PROBLEMS

PRIMOS IV, REVISION 16.¢ PAGE 39

. 3 S99 S PN P SESLY S U ¥ 3 2 LPIPLS -5 g L2 -5

THE FOLLOWING IS A LIST OF PROBLEMS WHICH YERE CORRECTED AT
REV1é¢.1. WHERE APPLICABLE, TAR NUMBERS ARE INCLUDED.

S.1_FORCEW

RING 3 CALLS (NOT DOSSUB) ARE PROHIBITED FROM OPENING FILE ON
UNIT O (SYSUN - RESFRVED FOR SYSTEM USE) AND ON THE HIGHEST UNIT
NUMBER (MUNIT - RESERVED FOR COMOUTPUT). '

5.3_SPURIQUS_ESFIUS

THE ERROR MESSAGE “FILE IN USE™ WAS GIVEN WHEN THE FILE WAS IN
FACT NOT IN USE.

— e m e, R e R e R R S R Y e, r e el S e - -

IF SKCHS® WAS USED TO CLOSE THE COMOUTPUT FILE INSTEAD OF COMOSS,

THEN THE NEXT COMOUTPUT FILE OPENED COULD HAVE EXTRA CHARACTERS
INSERTED AT THE BEGINNING OF THE FILE.

e S = e 3D s e e e -t - — - - ——— — ——— ——

TERMINAL OUTPUT WAS FORCED ON IF AN ERROR MESSAGE RESULTED FROM

AN INA OR OTA IN A USER PROGRAM.

S.6_SYSTEM _HANG DURING PRINTER UNASSIGN

THE SYSTEM WOULD HANG IF THE LINE PRINTER BEING UNASSIGNED WAS
POWERED OFF (TAR H25477).

R e e S e C SR m e o o - - o e e ——-

A PROBLEM™ IN THE LOCATE LOCKING STRATEGY ALLOWED AN OPPORTUNITY
FOR POINTER MIS-MATCHES TO BE CREATED ON THE DISK.

5.8 _MAXSCH

THE DEFAULT VALUE FOR THE MAXSCH COMMAND WAS CORRECTED TO BE

THREE.

5.9_DMQ_BUFFERS

THE AMLBUF CONFIGURATION PARAMETER FAILED TO SET-UP THE DM@
BUFFERS CORRECTLY IF THE DEFAULT SIZE WAS CHANGED. ON SOME

SYSTEMS, THE DEFAULT RUFFERS WERE NOT CORRECTLY INITIALIZED.
(TAR #23422, #24788)

CORRECTED REVISION 16.0 PROBLEWMS

PRIMCS IV, RLVISION 16.2 PAGE 40

S10_VERSATEC PRINTER=PLOTIER

PRINT MODE AFTER SIMULTANEOUS PRINT-PLOT M™ODE FAILED. (TAR
#12068)

THE KEYS INSERT FILE WAS INCORRECTLY FORMATTED. COMMENTS WERE

NOT RECOGNIZED AS SUCH.

CORRECTED REVISION 16.0 PROBLEMS

PRIMOS IV, REVISION 16.2 PAGE 41

. ——— ———— —— - ——— o S - —————— ————— ——

THE FOLLOWING IS A LIST OF PROBLEMS WHICH WERE CORRECTED AT
REV16.2 BUT NOT AT REV16.1. WHERE APPLICABLE, TAR NUMBERS ARE
INCLUDED.

- —— . - - T - — T . Sn e . W A em - -

PROCESSES USING PTR OR PUNCH WERE GIVEN A DISPROPORTIONATE SHARE
OF CPU TIME.

e W . b, - W -

CALLS TO SRCH$S TO OPEN FILES ON REMOTE DISKS WHICH USED THE

SUB-KEY K$GETU (SYSTEM CHOOSES UNIT NUMRER) WOULD HANG FAM.

6.3 COMOUTPUT_COMMAND

COMOUTPUT COMMAND IGNORED ALL EXCEPT FILENAME IN TREENAME IF
"-OPTION" SPECIFIED.

6.4_SAVE_AND_RESTORE

ATTEMPTS TO SAVE OR RESTORE MEMORY IMAGES WHICH WERE AN ENTIRE
SEGMENT (0 THROUGH 177777 OCTAL) WOULD NOT WORK. (TAR #15791)

6.5_T$AMLC

CALLS TO T$AMLC TO RETURN STATUS RETURNED TNCORRECT INFORMATION.

(TAR #14792) OUTPUT BUFFER EMPTIED TOO SLOWLY. (TAR #23421)

PRWFS SOMETIMES FAILED TO POSITION FILE CORRECTLY ON LARGE DAM
FILES.

——————————— > > — G S — — ——— _ - W W o S T ——_—

IF AN ASRATE PARAMETER WAS NOT INCLUDED IN THE CONFIG COLD START
FILE, THE SYSTEM TERMINAL COULD BE SET TO THE WRONG BAUD RATE.
QUTPUT WAS MISSING OF GARBLED. (TAR #14514, #80695)

- - — — - - - -

ATTACH HOME TC A LOCAL DISK FROM A REMOTE CURRENT ATTACH POINT
FAILED TO INVALIDATE ATTACH POINT ON REMOTE SYSTEM.

6.9 _COMINP_FILE_EOF

THE ERROR MESSAGE "COMINP FILE EOF" WAS RETURNED IF ANY ERROR WAS

ENCOUNTERED WHILE READING FROM A COMMAND FILE. THE CORRECT ERROR
MESSAGE 1S NOW PRINTED. (TAR #80698)

CORRECTED REVISION 16.1 PROBLEMS

PRIMOS IV, REVISION 16.2 PAGE 42

- o - — —— — —

IF THE AMLC TRANSPARENT INPUT PRCTOCOL ®AS USED AND THE INPUT
BUFFER WAS NOT EMPTIED BY THE PROGRAM WHILE A LARGE AMOUNT OF
INPUT WAS DONE, THE SYSTEM COULD HANG.

TERMINAL INPUT WAS SOMETIMES LOST. THE PROBLEM WAS MOST APPARENT
WHEN USING BLOCK MODE TERMINALS.

CORRECTED REVISION 16.1 PROBLEMS

PRIMOS IV, REVISION 16.2 PAGE 43

——— v — S - — - —_— - — s . ——— — —— i S T e e - i —

FOR CONVENIENCE, THIS SECTION HAS BEEN REPEATED (IN LARGE

NOTE
PART) FROM THE PRIMOS REVISION 15 DOCUMENT.

~ b

\
\

\AT REVISION 15 OF PRIMOS, IT BECAME POSSIBLE TO SPECIFY CONFIG
\PARAMETERS AS A SERIES OF CONFIG DIRECTIVES. THE DIRECTIVES ARE
\KEPT IN A DATA FILE IN CMDNCO AND ARE PROCESSED BY THE PRELOADER

\TO SET UP ™MOST SYSTEM PARAMETERS. ™MOST CONFIGURATION PARAMETERS
\MAY STILL BF SPECIFIED VIA THE OLD-STYLE REGISTER SETTINGS, BUT
\THE CHANGE TO THE NEW=-STYLE IS RECOMMENDED. NEW CONFIGURATION

\FACILITIES ARE AVAILABLE ONLY BY SPECIFYING SYSTEM PARAMETERS AS
\CONFIG DIRECTIVES.

CONFIG, ITS DATABASES, ANY DATABASES IT ACCESSES, AND

\N :
\E R MESSAGES ARE SUBJECT TO CHANGE AT ANY REVISION OF PRIMOS.

oIk
RRO

\THIS SECTION INCLUDES THE UPDATES MENTIONED IN SECTION 1, AND
VINDICATES WHICH CONFIG DIRECTIVES ARE NO LONGER SUPPORTED.
\CHANGES T0 THIS SECTION HAVE BEEN MARKED WITH REVISION BARS.

\THE INFORMATION CONFIG PROCESSES WITH RESPECT TO NETWORKS HAS
\BEEN REDUCED T0O A VERY SIMPLE NET ON DIRECTIVE. ALL OTHER

VNETWORK CONFIGURATION INFORMATION IS NOW PROCESSED BY NETCFG.
\(SEE SEPARATE DOCUMENT ON NETCFG.) THE CONFIG DIRECTIVES FAM,
\MYNAME, AND RLOGIN ARE NO LONGER SUPPORTED, AND THE OLD STYLE

\CONFIG COMMAND NO LONGER PERMITS A <NODE> TO BE SPECIFIED. SOME
\NEW CONFIG DIRECTIVES HAVE ALSO BEEN ADDED AT REVISION 16.

—— - —— ———— — - P Y . T - — i —— T . - -

AS IS DONE CURRENTLY, THE PRELOADER ATTACHES TO CMDNCO AND LOOKS

FOR THE FILE C_PRMO. IF THE FILE EXISTS, 1T IS OPENED FOR
COMMAND INPUT; IF IT DOESN'T, THE 'PLEASE ENTER CONFIG*' PROMPT
IS ISSUED. THE FIRST EXECUTABLE DIRECTIVE IS READ (FROM THE

TERMINAL OR FROM C_PRMO), AND A 'CO TTY® IS ISSUED. THE
DIRECTIVE IS EXAMINED TO ENSURE IT IS A CONFIG DIRECTIVE.

N.B.: NOTE THAT COMMENTS == LINES STARTING WITH '**%' OR '/x' MAY
NOW PRECEDE THE CONFIG COMMAND IN C_PRMO.

AT THIS POINT, THE NEW PRFLOADER MAKES AN ADDITIONAL CHECK FOR
THE KEYWORD '=DATA' AS THE FIRST NAME ON THE CONFIG COMMAND. IF
THIS KEYWORD IS PRESENT, THE SECOND NAME FOLLOWING THE COMMAND IS

TAKEN AS THE NAME OF A CONFIGURATION DATA FILE. THE FILE IS
OPENED FOR INPUT, AND CONFIGURATION DIRECTIVES ARE PROCESSED AS
DESCRIBED BELOW. A NEW-STYLE CONFIG COMMAND APPEARS AS:

CONFIG -DATA <CONFIGURATION-DATA-FILENAME>

NOTE: WHILE NO RESTRICTIONS ARE PLACED ON
<CONFIGURATION-DATA-FILENAME> =—=- THE NAME OF THE CONFIGURATION
DATA FILE == IT IS SUGGESTED THAT THE NAWME CONFIG BE ADAPTED AS A

DEFACTO STANDARD.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

file:///CONFIG
file:///THIS
file:///NETWORK

PRIMOS IV, REVISION 16.2 PAGE b4

FOLLOWING THE ABOVE SEQUENCE, THE PRELOADER EITHER HAS READ AN
OLD~STYLE CONFIG COMMAND OR HAS THE NAME OF A DATA FILE
CONTAINING NEW-STYLE CONFIGURATION DIRECTIVES. THE FOLLOWING

DESCRIBES ALL POSSIBLE CONFIGURATION DIRECTIVES IN ALFHABETICAL
ORDER.

CORRESPONDENCE TO CURRENT CONFIG PARAMETERS IS NOTED WHERE
APPROPRIATE., DIRECTIVES (WHICH CANNOT BE ABBREVIATED) AND

LITERAL STRINGS ARE SHOWN IN UPPER CASE. SYNTACTIC VARIABLES ARE

SHOWN IN LOWER-CASE AND ENCLOSED IN ANGLE BRACKETS (<>,
OPTIONAL PARAMETERS ARE ENCLOSED IN SGUARE BRACKETS ([1).
DEFAULTS, WHICH OCCUR IF THE DIRECTIVE IS NOT SPECIFIED OR IF A

PARAMETER IS OMITTED, ARE UNDERLINED. THE CONFIGURATION
DIRECTIVES CAN APPEAR IN THE CONFIGURATION DATA FILE IN ANY ORDER
WITH THE EXCEPTION OF THE 'GO' DIRECTIVE, WHICH MUST BE THE LAST

DIRECTIVE IN THE CONFIGURATION DATA FILE.

ALL NUMERIC PARAMETERS ARE IN OCTAL UNLESS OTHERWISE SPECIFIED.

ALTDEV -- SPECIFY ALTERNATE PAGING DEVICE AND_SIZE

o, L e - R N A D P N T N T S P - O T A R T T

ALTDEV <DVNO> [<RECORDS>]

<DVNO> 1S THE DEVICE NUMBER OF THE ©DISK TG BE USED AS AN

ALTERNATE PAGING DEVICE. A <DVNO> OF 0 IS NOW ACCEPTABLE.
THIS DIRECTIVE CORRESPONDS TO THE OLD-STYLE CONFIG PARAMETER
4 /<DVNO>.

THE OPTIONAL PARAMETER <RECORDS> SPECIFIES THE SIZE OF THE

ALTERNATE PAGING DEVICE. <RECORDS> IS INTERPRETED AS A 16-BIT
PGSITIVE INTEGER AND MUST BE GREATER THAN ZERO. IF THE
<RECORDS> PARAMETER IS ALSO SPECIFIED ON THE PAGDEV DIRECTIVE,

THE SUM OF THE TWO <RECORDS> PARAMETERS IS USED TO CALCULATE
NSEG =-- THE TOTAL NUMBER OF SEGMENTS IN THE SYSTEM.

NOTE: THE ALTERNATE PAGING DEVICE WILL BE USED FOKR PAGING
ONLY IF THE SIZE OF THE PRIMARY PAGING DEVICE (PAGDEV) IS SET
WITH THE <RECORDS> PARAMETER == SEE DESCRIPTION OF PAGDEV

DIRECTIVE.

AMLBUF —--_ SET_TERMINAL _I/O_BUFFER_SIZES

—— - o ——————————— T aa e = ke e - - S S

AMLBUF <LINE> [<IBUFSZ>] [<OBUFSZ>] [<DMASIZ>]

THE TERMINAL INPUT AND OUTPUT BUFFERS FOR AMLC LINE NUMBER
<LINE> ARE SET TO THE NUMBER OF WORDS GIVEN BY <IBUFSZ> AND

<0BUFSZ>. FOR SYSTEMS WITH DM@ AMLC CONTROLLERS, <DMQSIZ> CAN
BE USED TO SPECIFY THE SIZE OF THE DM@ BUFFER FOR THE LINE.
OMITTING <IBUFSZ>, <OBUFSZ>, OR <DMQSI1Z> GR SPECIFYING O WILL

RESULT IN NO CHANGE TO THE DEFAULT BUFFER SIZE. A ‘'TERMINAL
1/0 BUFFERS TOO LARGE® MESSAGE WILL BE PRINTED IF THE TOTAL

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMQCS IV, REVISION 16.2 PAGE 45

SIZE OF THE I/0 BUFFERS (NOT INCLUDING THE DM@ BUFFER SIZES)
IS MADE TO EXCEED 32K WORDS. A 'BAD LINE # IN AMLBUF CMND'

MESSAGE WILL BE PRINTED IF <LINE> IS LESS THAN 0 OR GREATER
THAN THE NUMBER OF LINES CONFIGURED FOR THE SYSTEM. A 'BAD
DMQ AMLC CONFIGURATION' MESSAGE WILL BE PRINTED IF A DMQ

BUFFER SIZE THAT IS NOT A POWER OF 2 IS SPECIFIED OR IF THE
TOTAL SIZE OF THE I/0 BUFFERS PLUS DMQ BUFFERS EXCEEDS 64K

WORDS. THE DEFAULT BUFFER SIZ2ES ARE 200, 300, AND 40 (DECIMAL

128, 192, 32).

ASRATE -=-_SET_SYSTEM_CONSOLE_BAUD_RAIE

ASRATE <CTRL>

<CTRL> SPECIFIES THE BAUD RATE OF THE SYSTEM CONSOLE AS

FOLLOWS :
110 110 BAUD
1010 300 BAUD
2010 1200 BAUD
3410 9600 BAUD

THIS DIRECTIVE IS FEQUIVALENT TO0 (AND WILL OVERRIDE) THE
B-REGISTER SETTING OF *COLDS. THE DEFAULT VALUE IS 110. 1F
THE ASRATE DIRECTIVE IS OMITTED AND THE SYSTEM INCLUDES A SOC

o A |

CONTROLLER THE SPEED OF THE SYSTEM CONSOLE (USER 1) WILL BE
THE SAME AS IT WAS UNDER PRIMOS II. THIS IS NOT TRUE If THE
SYSTEM HAS AN OPTION-A CONTROLLER.

ASR§QE_::_SEI_AéB,IEEﬂlﬂ&k-lig_ﬁuiféﬁ_ﬁllﬁ

ASRBUF <LINE> [<IBUFSZ>] [<OBUFSZI>]

THE TERMINAL INPUT AND OUTPUT BUFFERS FOR THE ASR ARE SET TO
THE NUMBER OF WORDS GIVEN BY <IBUFSZ> AND <OBUFSZ>. OMITTING
<1BUFSZ> OR <OBUFSZ> OR SPECIFYING O «ILL RESULT IN NO CHANGE

TO THF DEFAULT BUFFER SIZE. A 'TERMINAL I/0 BUFFERS TO0O
LARGE®' MESSAGE WILL BE PRINTED IF THE TOTAL SIZE OF THE 1/0
BUFFERS (INCLUDING AMLC BUFFERS) EXCEEDS 32K WORDS. A 'BAD

LINE # IN ASRBUF CMND' MESSAGE WILL BE PRINTED IF <LINE> 1S
NOT 0. DEFAULT BUFFER SIZES ARE 200 AnD 300 (DECIMAL 128 AND
192).

A e e ovm 3 G o e S e o o o S o e o o £ e e o e

COMDEV <DVNO>

<DVNO> SPECIFIES THE DEVICE ON WHICH THE SYSTEM UFD CMDNCO
RESIDES. THE COMMAND DEVICE MUST BE SPECIFIED, EITHER WITH
THE COMDEV DIRECTIVE OR WITH A CONFIG DIRECTIVE. THIS

DIRECTIVE CORRESPONDS TO CONFIG PARAMETER 2/<DVNO>.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 46

— — ——————— — 0 B . —— — - S T > - ———— — i ———— ——— — T — . "

CONFIG <NTUSR> <PAGDEV> <COMDEV> [<OTHER PARMS>]

WITH THE EXCEPTION OF <NODE> (WHICH IS NO LONGER A VALID

\ OLD-STYLE CONFIG DIRECTIVE), AN OLD=-STYLE CONFIG DIRECTIVE CAN
\ BE INCLUDED ANYWHERE IN A CONFIGURATION DATA FILE. CIT WILL
NOT, HOWEVER, BE PRINTED ON THE SYSTEM CONSOLE AS IS THE
CONFIG COMMAND IN C_PRMO UNLESS *TYPOUT YES®' IS IN EFFECT =--
SEE TYPOUT DIRECTIVE.) A COMPLETE SPECIFICATION OF PARAMETERS
FOR THE OLD-STYLE CONFIG COMMAND IS AS FOLLOWS:
Q/<NTUSR> NUMRER OF TERMINAL USERS
1/<PAGDEV> PAGING DEVICE
Z/<COMDEV> COMMAND DEVICE
3/<MAXPAG> NUMRER PAGES PHYSICAL MEMORY TO USE
4/<ALTDEV> ALTERNATE PAGING DEVICE
S/7<NAMLC> NUMBER ASSIGNABLE AMLC LINES
H/<NFUSR> NUMBER PHANTOM USERS
7/<NRUSR> NUMBER REMOTE USERS (NEW AT REV 15)
10/<SMLCON> NON=ZERO => ENABLE SMLC
DISLOG_—-_SET_DISCONNECI_L0GOUI_QPTION
DISLOG YES
NO
IF 'YES! IS SPECIFIED, A LOGOUT WILL BF PERFORMED WHEN
DISCONNECT OCCURS ON AN AMLC LINE. THIS DIRECTIVE IS USED TO
SET THE FIGCOM VARIABLE DLOGOT. THE DEFAULT SETTING DOES NOT
LOGOUT ON DISCONNECT.
ERASL == SPECIFY SYSIEM _DEFAULI_ERASE_CHARACIER

ERASE [<CHAR>1 [<OCTAL-VAL>]

<CHAR> IS USED TO0 SFT THE SYSTEM DEFAULT CHARACTER-ERASE
CHARACTER. THE CHARACTER CAN OPTTIONALLY BE SPECIFIED AS
<OCTAL-VAL>,., FOR EXAMPLE:

ERASE A IS EGUIVALENT TO:
ERASE 301

THIS DIRECTIVE IS USED TC SET THE FIGCOM VARIABLE DEFERA
(DEFAULT VALUE IS '"'),

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS 1V, REVISION 16.2 PAGE 47

e e A D ol L e e - e n . T e = S - - - . — - ——— e i —

\ FAM <NODENAME> <NETTYPE>

\ FAM 1S NO LONGER A SUPPORTED CONFIG DIRECTIVE AND ITS USE IS
\ ILLEGAL. USE THE NETCFG COMMAND TO SPECIFY FAM INFORMATION.
\ (SEE SEPERATE DOCUMENT DESCRIBING NETCFG.)

\FILUNT == SPECIFY NUMBER OF SYSTEWM_ FILE UNITS

FILUNT <RSVUNT> <MAXUNT> <TOTUNT>

-

THE FILUNT DIRECTIVE 1S USED TO DEFINE THE NUMBER OF FILE
UNITS AVAILABLE TO A USER, AND TO PRIMOS. <RSVUNT> DEFINES
THE MAXIMUM NUMBER OF FILE UNITS GUARRANTEED TO BE AVAILABLE

TO EACH USER. <MAXUNT> DEFINES THE MAXIMUM NUMBER OF UNITS
ANY ONE USER MAY HAVE OPEN AT ONE TIME. <TOTUNT> DEFINES THE
TOTAL NUMBER OF UNITS THAT BE SIMULTANEQUSLY OPEN IN THE

SYSTEM. IF FILUNT IS NOT SPECIFIED IN THE CONFIGURATION FILE,
THE DEFAULTS ARE AS FOLLOWS:

P P e P

<RSVUNT> 16
<MAXUNT> 64
<TOTUNT> 20438

-

THE MAXIMUM TOTAL NUMBEF OF UMITS THAT MAY BE OPEN
SIMULTANEOUSLY BY ALL USERS IS 2048. <TOTUNT> MAY BE USED T0

REDUCE THIS NUMBER. BY REDUCING THE TOTAL NUMBER OF FILE UNIT
TABLE ENTRIES IN THE SYSTEM, THE EFFECT WILL BE TO REDUCE THE
AMOUNT OF VIRTUAL MEMORY USED BY THE FILE SYSTEM. PRIMOS DOES

ATTEMPT TO KEEP THE ACTUAL NUMRER OF FILE UNIT TABLE ENTRIES
IN USE TO A MINIMUM IN ORDER TO KEEP DOWN THE SIZE OF THE
WORKING SET. FOR EACH CONFIGURED USER, THREE FILE UNITS ARE

Pl Ll i Ll i it

ALLOCATED AT COLD-START.

THE MAXIMUM NUMBER OF UNITS THAT ANY ONE USER MAY HAVE OPEN

SIMULTANECUSLY IS 64. OF THE 64 UNITS, 2 ARE RESERVED FOR
EXCLUSIVE USE BY THE SYSTFM, <MAXUNT> MAY BE USED TO REDUCE
THIS NUMBER, BUT NOT BELOW 2., THE HIGHEST NUMBERED FILE UNIT

AVAILABLE IS "<MAXUNT> = 1", IT MAY BE DESIRABLE 1IN SPECIAL
CIRCUMSTANCES TO RESTRICT <MAXUNT> T0 16, THUS PROVIDING
COMPATABILITY WITH PRIMOS II AND PRINMOGS IIl.

P i gl PP g P

THE NUMBER OF FILE UNITS GUARANTEED TO BE AVAILABLE TO EACH
USER IS 16. <RSVUNT> MAY BE USED TO INCREASE OR DECREASE THIS

QUANTITY. SINCE THERE ARE NOT ENOUGH FILE UNIT TABLE ENTRIES
TG PERMIT AtLL USERS TO HAVE 64 FILE UNITS OPEN SIMULTANEOUSLY
(64*64=4096), SRCH$$S MAY RETURN THE ERROR CODE ESFUIU (ALL

UNITS IN USE). IF MULTIPLE COOPERATING PROCESSES (USERS)
DEPEND ON HAVING A CERTAIN NUMBER OF FILE UNITS AVAILABLE, THE
POSSIBILITY OF A DEADLOCK EXISTS. <RSVUNT> SHOULD BE

SPECIFIED SO THAT THERE ARE SUFFICIENT UNITS AVAILABLE 70
PREVENT DEADLOCK. THAT 1S, <TOTUNT> MUST BE GREATER THAN OR

o A P o |

CONFIG - A TOOL FOR CONFIGURING PRIMOS

file:///FILUNI

PRIMOS IV, REVISION 16.2 PAGE 48

\ EQUAL TO <RSVUNT>=%N, WHERE "N®" IS THE NUMBER OF CONFIGURED
\ USERS, AND <TOTUNT> IS LESS THAN OR EGUAL TO 2048.
GO_--_MARK_END_OF_CONFIGURATION_FILE

THE GO DIRECTIVE MARKS THE END OF THE CONFIGURATION DATA FILE.
ANY SUBSEQUENT LINES IN THE CONFIGURATION FILE ARE IGNORED.
THE CONFIGURATION DATA FILE MUST INCLUDE A 60 DIRECTIVE.

e S o

KILL == SPECIFY SYSTEM DEFAULT KILL_CHARACIER

KILL [<CHAR>] E<OCTAL-VAL>1

<CHAR> IS USED TO SET THE SYSTEM DEFAULT LINE-KILL CHARACTER.
THE CHARACTER CAN OPTIONALLY BE SPECIFIED AS <OCTAL-VAL>.
THIS DIRECTIVE IS USED TO SET THE FIGCOM VARIABLE DEFKIL. THE

DEFAULT WOULD BE SPECIFIED AS:

KILL ? OR EQUIVALENTLY:
KILL 277
LOGLOG == ALLOW_LOGINS WHILE LOGGED_IN
LOGLOG YES
NO

IF "YES' IS SPECIFIED, THE LOGIN COMMAND WILL BE PERMITTED

WHILE A USER IS LOGGED IN. IF 'NO' IS SPECIFIED, THE LOGIN
COMMAND WILL BE INHIBITED WHILE A USER IS LOGGED IN. THIS
DIRECTIVE IS WUSED T0 SET THE FIGCOM VARIABLE LOGOVR. THE

\ DEFAULT SETTING ALLOWS LOGINS WHILE LOGGED IN. THE EXTERNAL
\ LOGIN PROGRAM (IF PRESENT) IS RUN ONLY ONCE IF A USER LOGS IN
\ WHILE ALREADY LOGGED IN (AND LOGLOG YES HAS BEEN SPECIFIED FOR
\" CONFIGURATION).
LOGMSG == PRINT_LOGIN/LOGOUY MESSAGES
LOGMSG YES
NO

THIS DIRECTIVE CONTROLS THE PRINTING OF LOGIN AND LOGOUT

MESSAGES ON THE SYSTEM CONSOLE. 'YYESY IS THE DEFAULT, WHICH
CAUSES THE MESSAGES TO BE PRINTED. SPECLFYING °NO' WILL CAUSE
THE MESSAGES TO BE SUPPRESSED. THIS DIRECTIVE IS USED TO SET

THE FIGCOM VARIABLE NLGPRT.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 49

e - —— — - S . S5 W e e SR e . —— S S - S ST - o — —

LOGREC <VAL>

<VAL>, IF POSITIVE, SPFCIFIES THE NUMBER OF WORDS IN THE

LOGREC FILE. WHEN LOGREC EXCEEDS <VAL> WORDS, THE ‘EXCEEDING
QUOTA ON LOGREC® MESSAGE IS PRINTED AS EACH NEW ENTRY IS ADDED
TO0 LOGREC. SPECIFYING AN <VAL> OF 0 WILL INHIBIT THE QUOTA

CHECK; NO MESSAGE WILL EVER BE PRINTED. SPECIFYING A
NEGATIVE <VAL> WILL SUPPRESS ALL ATTFMPTS TO WRITE TO THE
LOGREC FILE. (THIS WILL AVOID DISK WRITE ERRORS IF RUNNING ON

A WRITE-PROTECTED DISK.) THE DEFAULT VALUE IS 10000 (4096
DECIMAL). THIS DIRECTIVE IS USED TO SET THE VARIABLE LRQUOT
IN FIGCOM.

LOUTGM —-— SPECIFY INACTIVITY-LOGOUT GQUANTUM

LourTam <MINS>

THIS DIRECTIVE SPECIFIES THE NUMBER OF MINUTES OF INACTIVITY
TC BE ALLOWED TO PASS BEFORE A USER IS AUTOMATICALLY LOGGED
QUT. THE DEFAULT VALUF IS 1750 (1000 DECIMAL) MINUTES. THIS

DIRECTIVE IS USED TO SET THE FIGCOM VARIABLE LOUTGM. <MINS>
MUST BE GREATER THAN ZERC.

- o —— S Gl G5 G M MR R e o - . T = = e e S S ——— ——— T — ——— T — — T — o - —

MAXPAG <NPAGES>

<NPAGES> 1S THE NUMBER OF PAGES OF PHYSICAL MEMORY TO VALIDATE

FOR USE. THE DEFAULT VALUE IS 4030 (256 DECIMAL). THIS
DIRECTIVE CORRESPONDS TO THE OLD-STYLE CONFIG PARAMETER
3/<NPAGES>. (MEMORY VALIDATION OCCURS AT COLD START. EACH

PAGE IS 1024 WORDS.)

. . ——— ——— — . —— o ——————— . - —— S — — ————— — — -~ —, —

\ MYNAME <NODENAME>

\ MYNAME IS NO LONGER A SUPPORTED CONFIG DIRECTIVE AND ITS USE
IS ILLEGAL. USE THE NETCFG COMMAND TO SPECIFY <NODENAME>

-

\ INFORMATION., (SEE SEPERATE DOCUMENT DESCRIBING NETCFG.)

—— . - —— —— . - D W i - A S Y -) e saae

NAMLC <NLINES>

<NLINES> SPECIFIES THE NUMBER OF ASSIGNABLE AMLC LINES IN THE
SYSTEM. THIS DIRECTIVE CORRESPONDS TO THE OLD=-STYLE CONFIG

PARAMETER 5/<NLINES>. THE DEFAULT VALUE 1S O.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 50

- e ——— e —— R . . A - P S S o S —— — o S —

\ NET ON

e S O e v i o > e S - —— i = S - - — o > W A S5 e e D e o e e e S S o -

\ THIS DIRECTIVE SPECIFIES THAT NETWORKS ARE TO BRE CONFIGURED.

\ IF THIS DIRECTIVE IS NOT SPECIFIED, THEN NETWORKS WILL NOT BE

\ CONFIGURED. THE PREVIOUS QUALIFIERS OF THIS DIRECTIVE ARE NO

\ LONGER SUPPORTED AND ARE ILLEGAL. (SEE SEPARATE DOCUMENT ON

\ NETCFG.)

NPUSR_-=_SPECIFY NUMBER _OF PHANTOM USERS
NPUSR <N>
<N> SPECIFIES THE NUMBER OF PHANTOM USERS TO BE CONFIGURED.
IT IS ADDED TO NTUSR AND NRUSR TO DETERMINE THE TOTAL NUMBER
O0F USERS ON THE SYSTEM. THIS DIRECTIVE CORRESPONDS T0 THE
OLD-STYLE CONFIG PARAMETER 6/<N>. THE DEFAULT IS O.

NRUSR_-= SPECIFY NUMBER_REMOIE_USERS

NRUSR <N>
<N> SPECIFIES THE NUMBER OF PROCESSES TO BE RESERVED FOR
RFMOTE LOGINS (THE DEFAULT NUWMBER 1S 0). THE NRUSR DIRECTIVE
ALLOWS UP TO <N> CONCURRENT REMOTE USERS TO CONNECT TO THIS
SYSTEM USING THE =-ON KEYWORD OF THE LOGIN COMMAND (MAXIMUM
VALUE 1S 40 -- DECIMAL 32). THE NUMBER OF REMOTE USERS 1S
ADDED TO NPUSR AND NTUSR TO DETERMINE THE TOTAL NUMBER OF
USERS ON THE SYSTEM.

\NSEG_—=_SPECIFY NUMBER_AVAILABLE_SEGMENTS_IN_SYSTEM

\ NSEG <NUMBER>

THIS DIRECTIVE SETS THE TOTAL VIRTUAL ADDRESS SPACE FOR A
SYSTEM (THE VARIABLE NSEG IN SEGMENT 4). <NUMBER> SPECIFIES
THE NUMBER OF PAGE MAPS T0 BE ALLOCATED DURING SYSTEM

INITIALIZATION. THERE MAY BE FEWER PAGE MAPS AVAILABLE THAN
THE NUMBER OF POSSIBLE USER SEGMENTS. THUS, ALTHOUGH A 64
USER SYSTEM CAN ALLOW 64 POSSIBLE SEGMENTS TO BE ADDRESSED BY

EACH USER, THERE IS A LIMIT OF <NUMBER> SEGMENTS WHICH CAN
ACTUALLY BE IN USE BY ALL USERS AT ANY GIVEN TIME, THE SYSTEM
ALLOWS A MAXIMUM OF 320 DECIMAL (500 OCTAL)Y PAGE MAPS. THE

| A o |

DEFAULT VALUE OF <NUMBER> IS 192 DECIMAL (500 OCTAL).

IF THE AMOUNT OF PAGING SPACE SPECIFIED IN THE PAGDEV AND

ALTDEV DIRECTIVES WILL NOT PERMIT NSEG SEGMENTS TO BE
ALLOCATED, NSEG IS REDUCED TO CONFORM WwITH THE AMOUNT OF
PAGING SPACE AVAILABLE. (SEE ALSO THE ALTDEV AND PAGDEV

DIRECTIVES.)

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 51

NTUSR_=—— SPECIFY NUMBER_OF TERMINAL USERS

-—— - —— . ———— . ——— — —————— —— — —— 0 —— " ——

NTUSR <N>

<N> SPECIFIES THE NUMRER OF TERMINAL USERS TO BE CONFIGURED.

THE NUMBER OF USERS MUST BE SPECIFIED, EITHER WITH THE NTUSR
DIRECTIVE OR WITH THE CONFI16 COMMAND < THIS DIRECTIVE
CORRESPONDS TO THE OLD-STYLE COKNFIG PARAMETER O/<N>. NTUSR

MUST RE GREATER THAN 1 AND LESS THAN 65. NTUSR IS ADDED T0O

NPUSR AND NRUSR TO DETERMINE THE TOTAL WNUMBER OF USERS ON THE
SYSTEM.

-

\NUSEG_ -~ SET NUMRER _OF USER _SEGMENTIS_PER USER

\ NUSEG <NUMBEK>

\ THIS DIRECTIVE SETS THE SIZE OF THE VIRTUAL ADDRESS SPACE FOR
\ EACH USER BY SETTING THE SIZE OF EACH PROCESS' DESCRIPTOR
\ TABLE 2., <NUMBER> SPECIFIES (IN OCTAL) THE NUMBER OF SEGMENTS
\ AVAILABLE TO EACH USER PROCESS. THE PRIMOS IV SYSTEM RESERVES
\ ROOM FOR A TOTAL OF 4096 USER SEGMENTS. THEREFORE, THE
\ PRODUCT OF <NUMBER> TIMES THE TOTAL NUMBER OF USERS (INCLUDING
\ PHANTOMS AND REMOTE LOGIN USERS) CANNOT EXCEED 64096. THE
\ DEFAULT VALUE OF <NUMBER> IS 32 DECIMAL (40 OCTAL).
PAGDEV _—--_SPECIFY PAGING_DEVICE_AND_SIZE

. oy 9 TR P TR R PR P P e %N

PAGDEV <DVNQ> L[<RECORDS>]

<DVNO> SPECIFIES THE PHYSICAL DISK ON WHICH PAGING IS TO TAKE

PLACE. THE PAGING DEVICE MUST BE SPECIFIED, EITHER WITH THE
PAGDEV DIRECTIVE OR WITH THE CONFIG COMMAND. TH1S DIRECTIVE
CORRESPONDS TO THE OLD-STYLE CONFIG PARAMETER 1/<DVNO>.

THE OPTIONAL PARAMETER <RECORDS> IS USED TO SPECIFY THE SIZE
OF THE PAGING DISK. IT IS INTERPRETED AS A 16-BIT POSITIVE

INTEGER AND MUST BE GREATER THAN ZERO. SPECIFYING <RECORDS>

HAS TWO CONSEQUENCES. FIRST, <RECORDS>, POSSIBLY IN
CONJUNCTION WITH A <RECORDS> SPECIFICATION ON AN ALTDEVY
DIRECTIVE, IS USED TO LIMIT NSEG -- THE TOTAL NUMBER OF

SEGMENTS IN THE SYSTEM, SECOND, IF AN ALTERNATE PAGING DEVICE
HAS BEEN SPECIFIED (ALTDEV), <RECORDS> WILL DEFINE THE POINT

AT WHICH PAGE SPACE ALLOCATION SWITCHES FROM THE PRIMARY TO
THE ALTERNATE PAGING DEVICE.

NOTE: <RECORDS> CAN BE AS SMALL AS 1 TO FORCE ALMOST ALL
PAGING TO OCCUR ON THE ALTERNATE PAGING DEVICE. THE PRIMARY
DEVICE, HOWEVER, WILL ALWAYS BE USED TQ PAGE THE SEGMENTS USED

RY PRIMOS IV (SEGMENT NUMBERS 0=-12 AND USER 1'S SEGMENT 6000).

CONFIG = A TOOL FOR CONFIGURING PRIMOS

file:///NUSEG

PRIMOS 1V, REVISION 16.2 PAGE 52

- — .~ ——— — ——— W T e G G W= S W G S e S M G GEe CEA U e A G G- G S S M S e Sk e i A eaie

PREPAG <N>

<N> SPECIFIES THE NUMBER QF PAGES TO PREPAGE QOUT WHEN A PAGE

FAULT OCCURS. THE DEFAULT VALUE IS 3. THIS DIRECTIVE SETS
THE VARIABLE PREPGK IN PAGCOM.

POy B~ 3 LUENIPIPED- 4 My_P 4 PN U LY -REL SF 9 N P2 S I T V-0 AP A Y -SSP AN P

\ RLOGIN <NODENAME> <NETTYPE>

\ RLOGIN IS NO LONGER SUPPORTED AS A CONFIG DIRECTIVE AND ITS

USE IS ILLEGAL. USE THE NETCFG COMMAND TO SPECIFY REMOTE
\ LOGIN INFORMATION. (SEE SEPERATE DOCUMENT DESCRIBING NETCFG.)

-

——— i e ———— —— —— - ——— S S T G T G - - A S S W —— — - —— " (o . A o S > - a5 St T

RWLOCK <VAL>

<VAL> IS USED 70 SET THE FIGCOM VARIABLE RWLOCK =-- THE

SYSTEM~WIDE FILE READ/WRITE LOCK. VALID VALUES OF <VAL> ARE:

0 - 1 READER OR 1 WRITER (WRITER HAS EXCLUSIVE CONTROL)
1 - N READERS OR 1 WRITER (WRITER HAS EXCLUSIVE CONTROL)
3 - N READERS AND 1 WRITER

5 - N READERS AND N WRITERS

THE DEFAULT SETTING OF RWLOCK IS 1.

\" NOIE: FWANY SUBSYSTFMS (SUCH AS SPOOL, CX, ETC.) DO NOT
\ PFRMIT MULTIPLE WRITERS.
SHLL -=_ENABLE_AND_CONFIGURE_SHMLC_LINES

SMLC ON

SMLC CNTRLR <CTRLR-NUMBER> <DEVADR>
SKELC SMLCNN <CTRLR=-NUMBER> <LINE-NUMBER>

SMLC DIRECTIVES ARE USED TO ENABLE AND CONFIGURE SMLC LINES.
SPECIFYING 'ON' ENABLES THE SMLC IN THE DEFAULT CONFIGURATION.

THIS CORRESPONDS TO THE OLD-STYLE CONFIG SPECIFICATICON 10/1.
THE DEFAULT VALUE LEAVES THE SMLC DISABLED.

THE SMLC CNTRLR FORM IS USED TO SPECIFY THE PHYSICAL DEVICE
NUMBER(S) OF THE SMLC CONTROLLERS. <CTRLR=-NUMBER> 1S O OR 1;
<DEVADR> IS THE PHYSICAL DEVICE ADDRESS OF THE SPECIFIED

CONTROLLER NUMBER. DEFAULT VALUES FOR CONTROLLER ADDRESSES
ARE CONTROLLER 0O AT 50 AND CONTROLLER 1 UNDEFINED.

THE SKMLC SMLCNN FORM IS USED 710 MAP LOGICAL LINE NUMBERS
(SMLCOO-SMLCO3) ONTO PHYSICAL CONTROLLERS AND LINE NUMBERS.

CONFIG = A TOOL FOR CONFIGURING PRIMOS

file:///_______Z_____CIFY__E_QI__LOGI__N

PRIMOS IV, REVISION 16.2 PAGE 53

<CTRLR-NUMBER> IS AS FOR THE THE SWLC CNTRLR DIRECTIVE;
<LINE-NUMBER> IS THE PHYSICAL LINE NUMBER ON THE CONTROLLER

FROM {0 70 3, THE DEFAULT VALUES MAP SMLCOO-SMLCO3 ONTO
CONTROLLER 0, PHYSICAL LINES 0-3.

IYPOUT == CONTROL_PRINTING OF CONFIGURATION COMMANDS
TYPOUT YES
NO

PRINTING OF THE CONFIGURATION DIRECTIVES ON THE SYSTEM CONSOLE
IS UNDER THE CONTROL OF THE TYPOUT DIRECTIVE. SPECIFYING
'YES' WILL CAUSE THE DIRECTIVES TO BE PRINTEDP AS THEY ARE

PROCESSED. THE DEFAULT OR ANY OTHER SPECIFICATION WILL CAUSE
PRINTING OF THE DIRECTIVES TO BE SUPPRESSED. (SEVERAL TYPOUT
DIRECTIVES CAN BE USED TO PRINT SELECTED CONFIGURATION

DIRECTIVES.)

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 54

—— e T T . A - — S - S — O T > GE . S - Soe - T e - e S Sa T

THE FOLLOWING LISTS &LL ERROR MESSAGES GENERATED BY THE PRIMOS 1V
PRELOADER ('PRIMOS') AND THE PRIMOS IV AND NETWORK INITIALIZATION
\SEQUENCES. THE MAJORITY OF THE CONFIG MESSAGES ARE FATAL, AND

\CAUSE CONFIGURATION TO TERMINATE. ANY ERROR MESSAGES WHICH DO
\NOT COME FROM THE PRELOADER ('PRIMOS'), REQUIRE THAT PRIMOS II BE
\BOOTED AGAIN FROM THE CONTROL PANEL (I.F., START OVFR FROM THE

\BEGINNING).

7.5.17 PRELOADER ("PRIMOS') ERROR MESSAGES

<FILE-SYSTEM=-FERROR-MESSAGE> CMDNCO (PRIMOS)

A FILE SYSTEM ERROR WAS ENCOUNTERED BY THE PRELOADER WHILE
ATTEMPTING TO ATTACH TO CMONCO.

<FILE-SYSTEM-ERROR-MESSAGE> C_PRMO (PRIMOS)

A FILE SYSTEM ERROR (OTHER THAN FILE NOT FOUND) WAS
ENCOUNTERED BY THE PRELUADER WHILE ATTEMPTING TO OPEN THE
FILE C_PRMO FOR COMMAND INPUT.

FIRST COMMAND MUST BE CONFIG

THE COMMAND TYPED IN RESPONSE TO THE 'PLEASE ENTER CONFIG!

EXTERNAL COMMAND CONFIG.

<FILE-SYSTEM=-ERROR-MESSAGE> <CONFIG-FILE> (PRIMOS)

A FILE SYSTEM ERROR WAS ENCOUNTERED BY THE PRELOADER WHILE

ATTEMPTING TO OPEN THE CONFIGURATION FILE <CONFIG-FILE>.

\ MISSING NTUSR, PAGDEV, OR COMDEV

\ THE CONFIGURATION DATA FILE DID NOT SPECIFY THESE REQUIRED

\ PARAMETERS.

ILLEGAL PAGDEV

THE DEVICE SPECIFIED FOR PAGING IS NOT A LEGAL PAGING

DEVICE.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

