
JINNY REV16.2 02/20/

**
** ***************** ***

**
**
**
**
**

JJ J
J

III
I

M ft
|Vi|Vj fVjjV] MM jvj(vi

* *
* *
* *

W W W

M - . V w W M.

Y Y
Y
Y

* *
* *
* *

J J
JJ

I
I I I n

* * •
* *
* * RRRR -EEE.EE V 1 666 222
* *
* *
* *

R R
R R
RRRR

E
E
EEEE V

11
1
1

6
6
6666

2 2
2

2
* *
* *
-.**

R
E
E
EEEEE

V V
VV
V

1
1

111

6 6
6 6

666

2
2 ,

22222
* *
* *
* *

[* * * * * * * * * * * ; * ; *

*

DATE: NOVEMBER 21, 1978

SUBJECT: PMA, REV. 16.2

l_SCOPE .

THIS DOCUMENT DESCRIBES THE CHANGES MADE TO PM A AT SOFTWARE REVISION
16.2. IT SUPPLEMENTS ALL PREVIOUS PMA-RELATED DOCUMENTS RELEASED FROM
ENGINEERING.

2 ERROR HANDLING

WHEN THE ASSEMBLER ENCOUNTERS AN ERROR, A MORE PRECISE AND INFORMATIVE
ERROR DIAGNOSTIC IS PRINTED FOLLOWING THE OFFENDING LINE. FOR EXAMPLE:

000000 000000
(0001)
C0002)

REL
DATA 0

** CO003) SEG
ERROR V21 : SEG/SEGR PSEUDO-OP SPECIFIED AFTER CODE HAS BEEN GENERATED

000001 (0004) END

TEXT SIZE: 000001 WORDS

ERRORS IN:
0003 CV21)

0001 ERRORS CPMA-REV 16.3)

THE ERROR MESSAGE TEXT RESIDES IN SYSOVL>PMAERR. IF THE FILE IS
MISSING OR INACCESSIBLE, AN ABBREVIATED DIAGNOSTIC IS ISSUED, OMITTING
THE EXPLANATORY TEXT. (E.G., IN THE ABOVE EXAMPLE, "ERROR V21" WOULD
BE PRINTED.)

3 NEW OPCODES

THE NEW OPCODES FOR THE PRIME 550 CSTPM, LIOT, PTLB) HAVE BEEN ADDED

PAGE

DATE: SEPTEMBER 7, 1978

SUBJECT: REV. 16 - FTN

THIS MEMO DESCRIBES THE CHANGES AND ENHANCEMENTS TO FTN FOR REV 16.

T_ ENHANCEMENTS

A. FTN GENERATES FLX AND DFLX INSTRUCTIONS FOR CERTAIN CLASSES AT
ARRAY EXPRESSIONS, REPLACING PREVIOUS, MORE VERBOSE OBJECT CODE.

B. COMPILE SPEED IS INCREASED SIGNIFICANTLY DUE TO THE USE OF I/O
ROUTINES WHICH TAKE ADVANTAGE OF THE PHYSICAL I/O STRUCTURE UNDER
PRIMOS. THIS SPEED INCREASE IS MORE DRAMATIC IN COMPILATIONS WHICH
GENERATE LISTING FILES, AND IN COMPILAT I PINS ACROSS A NETWORK,

C. A NEW OPTION, - PBECB (B REGISTER BIT 2) INSTRUCTS FTN TO LOAD
ECH'S INTO THE PROCEDURE FRAME IN 64V MODE PROGRAMS, THUS ALLOWING
ECB'S TO BE SHARED. THIS FEATURE IS LIMITED TO SUBROUTINES: MAIN
PROGRAMS ARE NOT ABLE TO TAKE ADVANTAGE OF THIS OPTION.

T. THE FOLLOWING LIBRARY ROUTINES ARE CALLED USING THE SHORT CALL
(JSXB) SEQUENCE:

_ _ _____

COS DCOS
ATAN DATAN
SORT DSORT
EXP DEXP
ALOG DLOG
ALOG1U DLOG10
DL0G2

THIS FEATURE GARNERS EXECUTION SPEED INCREASES FOR PROGRAMS USING THESE
SCIENTIFIC FUNCTIONS.

_ _ I X E S

THE FOLLOWING BUG FIXES, DIVIDED INTO THOSE REQUESTED VIA TAR'S, AND
THOSE WHICH WERE MANIFESTED IN A LESS OFFICIAL MANNER, HAVE BEEN
INTRODUCED INTO FTN FOR REV 16.

~A~_ NO - TAR FIXES

1. GENERALIZED SUBSCRIPTS IN ARRAY EXPRESSIONS ARE ACCEPTED TO THE
LEFT OF THE EQUALS SIGN IN ASSIGNMENT STATEMENTS. HOWEVER, DIVISION TO
THE LEFT OF AN EQUALS SIGN STILL CAUSES A SYNTAX ERROR.

T. THE INCORRECT MATCHING OF EXPRESSIONS FOR PROGRAMS COMPILED IN 6T7T
MODE HAS BEEN FIXED.

PAGE

3. CERTAIN INCORRECT ARITHMETIC
LOOP. THIS HAS BEEN CORRECTED.

EXPRESSIONS CAUSED THE COMPILER TO

B. TARED FIXES

THESE ARE LISTED BY NUMBER:

15051 - SEQUENCE
15057 - MULTIPLE
80276 - BAD CODE

! 15229 * INT*4 OF
I 80550 - TOO MANY

NUMBERS
INDIRECTS
FOR COMPARISON IN 64R MODE
FUNCTION PROBLEMS IN 64R MODE
STATEMENT FUNCTIONS ...

80443 - SINSERTX WITH NO BLANK

SUBJECT: REV. 16 LOADER CHANGES

1. EDB

4 TIMES FASTER.

INPUT SPECIFICATION IS REQUIRED - I.E., EDB NO LONGER DEFAULTS TO THE
PAPER TYPE READER.

(PTR) AND (ASR) WILL NO LONGER BE RECOGNIZED. FOR CONSISTENCY
COMMAND LINE SYNTAX, -PRT AND -ASR SHOULD BE USED INSTEAD.

WITH

2. SEG

THE INTERNAL TABLES WHICH ARE COPIED INTO SEGMENT 0 OF THE SEG RUN FILE
HAVE BEEN CHANGED IN ORDER TO EXPAND THE SYMBOL TABLE AREA. THEREFORE,
ALL COMMAND FILES SHOULD BE RUN TO INSURE THAT THERE ARE CONFLICTS.
FOR EXAMPLE, R-MODE INTERLUDE COMMANDS IN CMDNCO CAN NOT HANDLE THE NEW
FORMAT UNTIL THEY HAVE BEEN REBUILT. OLD FORMAT SEG RUN FILES WILL BE
CONVERTED TO THE NEW FORMAT AUTOMATICALLY BY SEG. BUFCTL NOW CONSISTS
OF (SEGS*2+2 WORDS) : COMMON/BUFCTL/REVFLG,BUFCNT,BUFCTL(SEGS*2). A~
BIT RATHER THAN A WORD IS USED TO INDICATE WHETHER OR NOT A SEGMENT
SUBFILE HAS BEEN LOADED INTO. REVFLG WILL BE PRESENT FROM NOW ON. IT
IS SET TO -1 AS A FLAG THAT TABLE CONVERSION WILL NOT BE NECESSARY.
CURRENTLY, SEGS=256. THERE ARE 32 SUBFILES PER SEGMENT.

SEG CHECK FOR LOAD* OR VLOAD* TYPING ERRORS WHICH USED TO RESULT IN THE
RUN FILE BEING DELETED. COMMON BLOCKS LONGER THAN ONE SEGMENT NO
LONGER HAVE TO BEGIN AT UND ZERO. MULTIPLE STACK ALLOCATION WILL NO
LONGER RUN. THE MIX OPTION CAN BE USED WITH ARRAYS OVER 64K. THE
R-MODE INTERLUDE PROGRAMS WILL EXIT GRACEFULLY SHOULD CONTROL RETURN TO
RUNIT.

BUGS FIXED

TAR25528- UPDATE SYMBOL TABLE SIZE PRIOR TO WRITING OUT SEGMENT 0

TAR25724- DO NOT ASSIGN STACK SEGMENT

TAR25552- DOUBLE PRECSION ADD SO THAT COMMON BLOCKS LONGER THAN ONE
SEGMENT NO LONGER HAVE TO BEGIN AT WORD 0.

TAR25533- MIX OPTION/LONG COMMON BUG FIXED

TAR12731- CHECK FOR LOAD/VLOAD* TYPING ERROR

CMDMAK AND CM.FILE HAVE BEEN FIXED TO CALL EXIT UPON RETURN FROM RUNIT
IN THE R-MODE INTERLUDE PROGRAM

PAGE 2

DIRECT COMMON REFERENCE CONVERSION HAS BEEN FIXED

PAGE

LOAD

SYMBOLS MAY HAVE 8-CHARACTER NAMES

RR (RESET RANGE) CAN BE USED TO RESET THE SAVE RANGE PRIOR TO EN
(ENTIRE SAVE) WHEN OVERLAYS ARE BUILT.

LINKING IN COMMON IS NOW ALLOWED WHILE FORWARD
REFERENCES ARE BEING UNSTRUNG.

BUGS FIXED

LOAD ALLOWS LINKING IN COMMON WHEN UNSTRING FORWARD
REFERENCES. LOAD WILL NOW GIVE A CORRECT EOF ERROR
MESSAGE WHEN AN ATTEMPT IS MADE TO LOAD A NULL FILE

A FIX HAS BEEN MADE TO REMOVE THE CODE,CODE ARGUMENT
SEQUENCE IN PRWF$$ CALLS

LOAD HAS BEEN FIXED SO BITS DIPLAYED IN *UII ARE CORRECT

SUBJECT: CHANGES TO SORT "LIBRARIES A. VSRTLI CV-MODE SORT LIBRARY)
CHANGES AT REVS 15.3 AND 16.0

FOR CONSISTENCY WITH THF R-MODE SORT L I B R A R Y , CALLS TO THE
SUBROUTINE ASCSRT MAY NOW BE MADE AS CALLS TO THE SUBROUTINE
A S C S $ S .

THE V-MODE SORT LIBRARY'S INTERNAL ROUTINE SPACE HAS BEEN
REN AWED SPA CSS TO AVOID NAMING CONFLICTS WITH U S E R S ,

B. PROPOSED NAMING CONVENTION

ADOPTION OF A NAMING CONVENTION SIMILAR TO THAT OF THE
APPLICATION LIBRARY WOULD: BE BENEFICIAL IN AVOIDING THE
POSSIBILITY OF A CGNFLICT WITH USER WRITTEN ROUTINES AND SYSTEM
ROUTINES.

EXISTING ENTRY POINTS: SUBSRT, ASCS$$, ASCSRT
AND COMMON BLOCK .NAMES: EB$1# EB$2> EB$3,

(V-MODE ONLY),
EB$4, EB$5,

WOULD NOT BE
SUFFIX M$S".

CHANGED, BUT ALL OTHER NAMES WOULD END WITH THE

I WOULD APPRECIATE YOUR COMMENTS, PARTICULARLY CONCERNING ANY
PROBLEMS THIS SCHEME MIGHT CAUSE.

SUBJECT EVENT LOGGING I N PRIMOS H I , I V , AND V

ABSTRACT

EVENT LOGGING IN PRIMOS IS A MECHANISM WHEREBY MACHINE
ERRORS, AND CERTAIN OTHER SIGNIFICANT EVENTS ARE RECORDED

CHECKS, DISK
IN A DISK

FILE CALLED LOGREC. A UTILITY PROGRAM — LOGPRT — IS AVAILABLE TO
FORMAT AND PRINT THE CONTENTS OF LOGREC. THIS DOCUMENT DESCRIBES THE
LOGGING MECHANISM, THE USE OF LOGPRT, AND HOW THE LOGGING MECHANISM MAY
BE MODIFIED TO ADD NEW EVENT TYPES

\NOTE WHENEVER NEW REVISION OF PRIMOS IS INSTALLED, THE
NCORRESPONDING REVISION OF LOGPRT SHOULD BE INSTALLED, SINCE
\TYPES MAY HAVE BEEN DEFINED THAT AN OLDER LOGPRT DOES NOT

NEW EVENT
UNDERSTAND.

REVISION 3 OF THIS PE-T IS A COMPLETE UPDATE OF REVISION 2; NEW
MATERIAL IS INDICATED WITH REVISION BARS.

THIS REVISION CORRESPONDS TO REVISION 16.2 OF PRIMOS IV AND V. "^

PAGE

file:///NOTE
file:///TYPES

EVENT LOGGING IM PRIMOS

', ;•'';''•'•• :-::] •.. . /:?:.:'. . •;. :y\' '..':":.;'':; - ' '••: '•Wm1'. '.' ^:'|?fe ^ | | |

-- "\6«::'': ••/• 'y-'..'.'- • .. ."•'_ ';.- '• ';: '*'. "' -..••".,;'.'

THIS PAGE FOR TABLE OF CONTENTS

:-, '.::,... ... '..-J;,:' '.•'€•. '•-/' :
.\>l|;v;t/:-v:;

:f; ' • : •'•;-'.;.•;;;..'••• :'•

•

' ':•?:; '•••''• •; ™P'*$ '•• •• '•• '' ''- ''•• , ' ' 'T: ' . >:;'i;';.- • •••/•^ylyA
* . : - : v A l i p . . . ; ; •

' r •. :.'̂ ;̂:'l.:... . !

1

' •'• •'<• tS|:|-;.;. '' ::« :̂#S^ >P^WSW\M
.v i' :ri?SC""i

i

;

life im&

•-,::"• M^-:t-C : • P & " ' : 0 - - ' : • . ..':-:"-.:;;;;' ' '::.':'.: ' . \i^:\:: • -..;':v ;

' " • -:;t:' \- \'-: •-<:'• .'-';::-: • SfifS ' • - i

•.

•' r- '':••''' ..:.
;T-:. -• . '•:•; ' : ' , ' . " - ' l l S ' '' c i§r '•'• -

PAGE

EVENT LOGGING IN PRIMOS

1 GENERAL INFORMATION

INFORMATION ABOUT AN EVENT IS ENTERED INTO AN EVENT BUFFER — LOGBUF
— BY LOGEV1 — AN INTERNAL PRIMOS SUBROUTINE. EACH ENTRY IN THE
BUFFER CONTAINS THE TYPE AND LENGTH OF THE ENTRY AND A NUMBER OF
DATA WORDS PASSED TO LOGFV1 BY THE ROUTINE WISHING TO RECORD THE
EVENT. (THE EXACT FORMAT OF EVENT ENTRIES IS DESCRIBED BELOW.)
WHEN LOGBUF FILLS UP, LOGEV1 DISCARDS SUBSEQUENT ENTRIES AND
INCREMENTS LOGOVF — A COUNTER OF THE NUMBER OF EVENTS LOST.

\ LOGEV1 IS CALLED FROM THE CHECK HANDLERS IN SEGA, DOSSUB, DVDISK,
\ AND PABORT.

l^g„S„CQ^P_LEV£L_LQG6ER_rr-LOGEV?

EVERY MINUTE THE SECOND-LEVEL HANDLER, LOGEV2, EXAMINES LOGBUF AND,
IF IT IS NON-EMPTY, WRITES IT TO A DISK FILE NAMED 'LOGREC IN THE
CURRENT UFD OF USER 1 (NORMALLY CMDNCO ON THE COMMAND DEVICE.
L0GEV2 WILL NOT DUMP LOGREC UNTIL THE TIME HAS BEEN SET BY THE
SYSTEM OPERATOR. L06EV2 IS CALLED FROM TWO PLACES IN PRIMOS:
PABORT WHEN THE ONE-MINUTE PROCESS ABORT OCCURS, AND DOSSUB WHEN A
•SHUTDN ALL' COMMAND IS ISSUED.

LOGEV2 DOES NOT DUMP LOGBUF IF THE FILE LOGREC DOES NOT EXIST IN
CMDNCO OR IF THE~CONFIGURATION COMMAND LOGREC HAS BEEN USED TO SET
THE LOGREC QUOTA TO A NEGATIVE VALUE CSEE BELOW). THIS ALLOWS
OPERATION WITH A WRITE-PROTECTED COMMAND DEVICE. (NOTE: IF THE
COMMAND DEVICE IS WRITE-PROTECTED AND A LOGREC FILE EXISTS IN CMDNCO
AND A 'LOGREC 177777' HAS NOT~BEEN ISSUED, A DISK WRITE-PROTECT
ERROR MESSAGE WILL BE PRINTED ON THE SYSTEM CONSOLE EVERY MINUTE.)

THE LOGREC FILE CAN BE CREATED WITH ANY SEQUENCE OF COMMANDS
EQUIVALENT TO:

L 'CMDNCO PASSWORD>LOGREC'
C ?

BEFORE DUMPING LOGBUF, LOGEV2 WRITES AN ENTRY TO LOGREC NOTIN6 THE
CURRENT TIMF AND DATE. AFTER LOGBUF IS DUMPED, IF LOGOVF (THE
OVERFLOW COUNTER) IS NON-ZERO, LOGEV2 WRITES AN ENTRY NOTING THE
NUMBER OF LOGBUF OVERFLOWS.

NOTE: WHENEVER POSSIBLE, A. WARM START SHOULD BE PERFORMED AFTER A
MACHINE HALT. THIS WILL GIVE LOGEV2 A CHANCE TO DUMP LOGBUF, EITHER
AFTER ONE MINUTE OR ON A 'SHUTDN ALL' COMMAND.

PAGE

EVENT LOGGING IN PRIMOS

\ 1.3 THE LOGREC. CQNEISUBfiIIQM_C.QHI3.ABD

\ CERTAIN ACTIONS OF LOGEV2 CAN BE CONTROLLED BY THE LOGREC
\ CONFIGURATION COMMAND. THE FORMAT OF THIS COMMAND IS:

\ LOGREC <VAL>

\ <VAL>, IF POSITIVE, SPECIFIES THE NUMBER OF WORDS IN THE LOGREC
\ FILE. WHEN LOGREC EXCEEDS <VAL> WORDS, LOGEV2 PRINTS:

\ EXCEEDING QUOTA ON LOGREC

\ ON THE SYSTEM CONSOLE EACH TIME LOGBUF IS WRITTEN. TO LOGREC.

\ SPECIFYING A <VAL> OF 0 WILL INHIBIT THE QUOTA CHECK; NO MESSAGE
\ WILL EVER BE PRINTED.

\ SPECIFYING A NEGATIVE <VAL> (E.G., 177777) WILL SUPPRESS ALL
\ ATTEMPTS TO WRITE TO THE LOGREC FILE. THIS WILL AVOID DISK WRITE
\ ERRORS IF RUNNING ON A WRITE-PROTECTED DISK.

\ THE DEFAULT VALUE OF <VAL> IS 10000 (4096 DECIMAL). THIS COMMAND IS
\ USED TO SET THE VARIABLE LRQUOT IN FIGCOM.

1.4 LOGPRT — DUMP CONTENTS OF LOGREC

THE THIRD LEVEL OF THE EVENT LOGGING MECHANISM IS LOGPRT — A
PROGRAM THAT DUMPS THE CONTENTS OF LOGREC TD A DISK FILE OR A USER
TERMINAL. • THE LOGPRT PROGRAM IS IN THE UFD SYSTEM ON VOLUME 1 OF
THE MASTER DISK. THE COMMAND LINE TO INVOKE LOGPRT IS AS FOLLOWS
([_ INDICATES OPTIONAL PARAMETER):

\ R *LOGPRT C<OUTTREENAME>J C<OPT> <OPT> _

\ <OUTTREENAME> THE DESTINATION FOR LOGPRT*S OUTPUT. IF •TTY" IS
\ SPECIFIED, THE OUTPUT WILL BE TO THE USER'S TERMINAL. IF
\ <OUTTREENAME> IS OMITTED, OUTPUT WILL BE TO THE FILE 'LOGLST'
\ IN THE CURRENT UFD. ANY OTHER SPECIFICATION WILL BE TAKEN AS
\ A TREENAME TO WHICH THE OUTPUT WILL BE DIRECTED.

<OPT> AN OPTION KEYWORD, POSSIBLY FOLLOWED BY SUBFIELDS. ALL OPTION
KEYWORDS BEGIN WITH A HYPHEN AND MAY BE ABBREVIATED TO A
UNIQUE LEFT SUBSTRING (WITH THE EXCEPTION OF THE -PURGE
OPTION).

-HELP - A LIST OF LOGPRT OPTIONS IS PRINTED. THE LOGPRT
COMMAND MUST BE RETYPED AFTER THE OPTIONS ARE PRINTED.

-INPUT <TRNAME> - SPECIFY TREENAME OF LOGREC FILE TO PROCESS.
IF THIS OPTION IS OMITTED, A PROMPT IS ISSUED FOR THE
TREENAME.

PAGE

http://CQNEISUBfiIIQM_C.QHI3.ABD

EVENT LOGGING IN PRIMOS

-FROM MMDDYY - ONLY LOGREC ENTRIES FROM THE SPECIFIED DATE TO
THE LATEST ENTRY ARE PROCESSED.

-TYPE T1 T2 ... - PROCESS ENTRIES ONLY OF THE INDICATED TYPES.
THE TYPES (T1, T 2 , ETC) CAN BE ANY OF THE FOLLOWING (ANY
UNIQUE ABBREVIATIONS ARE ACCEPTABLE):

COLD COLD STARTS
WAR!*? WARM STARTS
TIMDAT TIME/DATE ENTRIES
CHECKS MACHINE CHECKS (INCLUDING MEMORY PARITY)
POWERF POWER FAIL CHECKS
DISK DISK ERRORS
DSKNAM ADDISK OR STARTU ENTRIES
OVERFL LOGREC OVERFLOW ENTRIES
SHUTDN OPERATOR SHUTDOWNS
CHK300 P300 MACHINE CHECKS
PAR300 P300 MEMORY PARITY CHECKS
MOD300 P30Q MISSING MEMORY MODULE CHECKS
TYPF10-TYPE15 ENTRIES FOR TYPES 10-15

NOTE THAT THE TIME/DATE STAMPS ASSOCIATED WITH THE SELECTED
ENTRIES WILL NOT BE PROCESSED UNLESS TIMDAT IS EXPLICITLY
SELECTED, FOR EXAMPLE, ».-T D T' WILL PROCESS ALL DISK
ERRORS AND THEIR ASSOCIATED TIME/DATE STAMPS, IF TIMDAT
ALONE IS SPECIFIED, ALL TIME/DATE STAMPS IN LOGREC WILL BE
PROCESSED. IF TIMDAT IS SPECIFIED IN CONJUNCTION WITH ONE
OR MORE OTHER TYPES, ONLY THE TIME/DATES OF THE SELECJED
TYPES WILL BE PROCESSED. IF THE -TYPE OPTION Is NOT
SPECIFIED, ALL ENTRIES WILL BE PROCESSED.

-SPOOL - (PRIMOS III AND IV ONLY) SPOOL THE OUTPUT F T L E WHEN
DONE. LOGPRT WILL PRINT THE NAME OF THE OUTPUT SPOOL FILE
AND A LONG/SHORT INDICATION.

-DELETE - DELETE THE OUTPUT FILE WHEN DONE (MAKES SENSE ONLY
WHEN USIN6 THE -SPOOL OPTION).

-PURGE - EMPTY LOGPEC WHEN DONF (THIS OPTION CANNOT BE
ABBREVIATED). OWNER RIGHTS ARE REQUIRED ON LOGREC.

-CONTIN - CONTINUE AFTER BAD ENTRY IS FOUND. LOGPRT WILL
NORMALLY HALT IF AN INVALID ENTRY IS ENCOUNTERED IN LOGREC.
IF THIS OPTION IS SPECIFIED, LOGPRT WILL CONTINUE
PROCESSING IN AN ATTEMPT TO FIND THE NEXT VALID ENTRY.

-D8UG - THIS OPTION CAUSES LOGPRT TO R T A D ENTRIES F~RU?! T H F
TERMINAL AND CAN BE USED FOR TESTING LOGPRT'S FORMATTING
FOR NEW (OR OLD) ENTRY TYPES. EACH ENTRY SHOULD BE ENTERED
AS A SERIES OF TOKENS (USING RDTK$$'S RULES). OCTAL TOKENS
ARE CONVERTED TO BINARY; ALL OTHERS ARE TAKEN AS ASCII
STRINGS AND TRUNCATED TO THE LEFTMOST TWO CHARACTERS.
LOGPRT LEAVES THIS MODE OF OPERATION WHENEVER A TOKEN

PAGE

EVENT LOGGING IN PRIMOS

STARTING WITH A HYPHEN IS ENTERED THE -DBUG OPTION ALSO
TURNS ON TTY OUTPUT AND THE -CONTIN OPTION.

IF LOGPRT FINDS THAT THE OUTPUT FILE ALREADY EXISTS, IT WILL PRINT
THE MESSAGE

OK TO DELETE OLD <OUTTREENAME> (Y OR N)

THE REPLY SHOULD BE 'Y' TO DELETE THE FILE OR 'N» TO ENTER A NEW
DESTINATION. IF 'N' IS ENTERED, THE MESSAGE

NEW SPECIFICATION

IS PRINTED.
REENTERED.

ALL PARAMETERS FOLLOWING THE 'R LOGPRT' MAY BE

FINALLY,, IF NO » -I • OPTION WAS SPECIFIED, LOGPRT PRINTS THE MESSAGE:

INPUT TREENAME:

THE TREENAME OF THE LOGREC FILE TO BE PRINTED SHOULD BE ENTERED. IF
A NULL LINE IS ENTERED, <Q>CMDNCO>LOGREC WILL BE ASSUMED.

2 LOGPRT PROCESSING

\LOGPRT FIRST OUTPUTS A HEADER LINE CONTAINING THE TREENAME OF THE INPUT
\FILE AND THE CURRENT TIME AND DATE. FOR EXAMPLE:

*****. <0>CMDNCO>LOGREC, 09:23:44 TUE 12 DEC 1978 *****

THE HEADER IS FOLLOWED BY FORMATTED ENTRIES, ONE OR MORE LINES PER
ENTRY. THE FOLLOWING ENTRIES ARE CURRENTLY DEFINED. (ALL NUMBERS ARE

\IN OCTAL EXCEPT WHERE NOTED. BRACKETS (C3) SURROUND INFORMATION THAT
\MAY NOT BE PRESENT FOR ALL CPU MODELS OR REVISIONS OF PRIMOS.)

Q9i01:2 0_WED_16_FEE_197 7

THIS IS A DATE/TIME ENTRY ENTERED BY LQGEV2 WHEN LOGBUF WAS DUMPED
TO LOGREC. ALL EVENTS FOLLOWING THIS ENTRY AND BEFORE THE NEXT
DATE/TIME ENTRY OCCURRED DURING THE MINUTE JUST PRIOR TO THE TIME
SHOWN.

COLD START C CPU TYPE= T MICROCODE REV= MM TD= IIIIII .. 3

A COLD START OF PRIMOS WAS PERFORMED. IF RUNNING UNDER REV 16.2
(OR LATER) OF PRIMOS, A COLD START ENTRY CONTAINS 8 WORDS OF
INFORMATION OBTAINED FROM THE STORE PROCESSOR MODEL NUMBER (STMP)
INSTRUCTION
FOLLOWS:

(SEE PE-TN-204). •CPU TYPE' INDICATES THE CPU AS

PAGE

file:///LOGPRT
file:///FILE

EVENT LOGGING IN PRIMOS

\ TYPE MODEL NUMBER
\ 0 PAOQ
\ 1 RESERVED
\ 2 RESERVED
\ 3 P350
\ A PA50I (PA50, PAOOT)
\ 5 P560 (P550, P520T)
\ 6 P500X (P500)
\ 7 RESERVED

\ 'MM' INDICATES THE REVISION OF MICROCODE RUNNING; 'XXXXXX ...» IS
\ THE FULL 8-WORD ID FROM THE STMP INSTRUCTION.

WARM START

A WARM START OF PRIMOS WAS PERFORMED.

MACHINE CHECK (XXX) DSWSTAT= SSSSSS SSSSSS DSWR«A= YYYYY RRRRRR RRRRRR
\ DSWPB= PPPPPP PPPPPP T. DWPARITY= XXXXXX XXXXXX 1

\ A MACHINE CHECK OCCURRED. DSWSTAT, DSWRMA, DSWPB, AND DSWPARITY
\ CONSTITUTE THE DSW AT THE TIME OF THE CHECK. DSWPARITY IS NOT
\ PRESENT ON ALL CPU MODELS. IF DSWPARITY IS NOT PRESENT, 'XXX' IS
\ AN ENCODING OF THE MACHINE CHECK CODE AND 'NOT RCM PARITY* IN
\ DSWSTATH AS FOLLOWS:

\ BPD PERIPHERAL DATA OUTPUT
\ BPAI PERIPHERAL ADDRESS INPUT
\ BMD MEMORY DATA OUTPUT
\ RCD CACHE DATA
\ BPAO PERIPHERAL ADDRESS OUTPUT
\ RDXI RDX-BPD INPUT
\ BMA MEMORY ADDRESS
\ RF REGISTER FILE
\ RCM RCM PARITY ERROR (XCS ONLY)

\ IF THE RMA INVALID BIT IS SET (BIT 9 OF DSWSTATL), 'YYYYY' IS
\ '(INV)', OTHERWISE 'YYYYY1 IS ABSENT.

\ IF DSWPARITY IS PRESENT, IT IS BROKEN DOWN BY REPORTING BOARD (A,
\ C, CS, D) AND SIGNAL NAME AS FOLLOWS. (NOTE: ALL SIGNALS ARE
\ REPORTED IN THE POSITIVE SENSE. FOR EXAMPLE, IF 'RCMPE' IS
\ PRINTED, IT MEANS THAT THE SIGNAL 'RCMPE-' WAS 0.)

\ DSWPARITYH

\ 01 - RPARERR1+ CS DMX INPUT E6: BPD OR BURST- R0,R2
\ E5: BPD OR BURST- R0,R1,R2,R3
\ DMX OUTPUT : BMD
\ 02 - RPARERR2+ CS DMX INPUT E6: BPD OR BURST- R1,R3
\ E5 : BPD
\ DMX OUTPUT : BMA

PAGE

EVENT LOGGING IN PRIMOS

\ 03 - FBDMX+ CS BURST-RODE DMX TRANSFER
\ OA - BURST-INPUT* CS 1 = 01*X INPUT,, 0=DMX OUTPUT

\ 05,06,07 - 0 - FPDPE+ D PERIPHERAL REPORTS BPD ERROR (OUTPUT)
\ 1 - FBRFHPE+ D BASE REGISTER FILE HIGH
\ 2 - FMDPE+ D MEMORY REPORTS BMD ERROR (WRITE)
\ 3 - FIPBAPE+ D PREFETCH BUFFER ADDRESS
\ A - FPAPE+ D PERIPHERAL REPORTS BPA ERROR (OUTPUT)
\ 5 - FBRFLPE+ D BASE REGISTER FILE LOW
\ 6 - FMAPE+ D MEMORY REPORTS BMA ERROR
V 7 - FIPBIPE+ D PREFETCH BUFFER INSTRUCTION
\ 08 - RCMPE- A RCM PARITY IF NO BOARD REPORTED ERROR
\ 09 - FMDECCU+ D MEMORY REPORTS ECC UNCORRECTABLE READ ERROR
\ 10 - GDBDPE- D PREFFTCH BOARD DETECTED ERROR
\ 11 - BPAIPE+ A BPA INPUT ERROR (DMX OR INTERRUPT)
\ 12 - FRDXPE+ A RDX ERROR WHEN MOST RECENTLY CLOSED
\ 13 - FRFPE+ A REGISTER FILE ERROR
\ 1A - FREAPE+ A REAH OR REAL ERROR
\ 15 - FDMX+ D DMX CYCLE AT TIME OF ERROR
\ 16 -

\ DSWPARITYL

\ 01 - GCBDPE- C C BOARD DETECTED ERROR
\ 02 - FPMDEVPE+ C BMD INPUT EVEN WD
\ 03 - FBMDODPE+ C BMD INPUT ODD WD
\ OA - LMMOD+ C MISSING MEMORY MODULE AT CACHE-MISS
\ 05 - LBMAPE+ C MEMORY REPORTS BMA ERROR AT CACHE-MISS
\ 06 - LFERNEXT- C LSB ADDR TO MEMORY AT ERROR (CACHE-MISS)
\ 07 - LFLRMAL15+ C LSB ADDR TO MEMORY AT START OF CACHE-MISS
\ 08 - LMISFL16+ C INDICATOR OF WHICH MEMORY MODULE WAS ACTIVATE
\ D
\ 09 - LBMDECCU+ C MFMORY REPTS ECC UNCORRECTABLE ON CACHE-MISS
\ 10 - LBMDECCC+ C MEMORY REPTS ECC CORRECTABLE ON CACHE-MISS
\ 11 - LRCIAPE+ C CACHE-INDEX ERROR ON CACHE-READ
\ 12 - LRCDODPE+ C CACHE-DATA-ODD WORD ERROR ON CACHE-READ
\ 13 - LRCDEVPE+ C CACHE-DATA-EVEN WORD ERROR ON CACHE-READ
\ 1A - LFSERVDBD- C PURPOSE OF CACHE CYCLE: 1=EXECUTE, 0=PREFETCH
\ 15 -
\ 16 -

MISSING MEMORY DSWSTAT= ...

A MISSING MEMORY MODULE CHECK OCCURRED. INFORMATION IS AS FOR A
MACHINE CHECK EXCEPT THE MACHINE CHECK CODE (XXX) DOES NOT APPEAR

\ AND DSWPARITY IS NOT DECODED.

MEMORY PARITY (XXXX) DSWSTAT= ... PPN,WN= PPPPPP WWWWWW

A MEMORY PARITY ERROR OCCURRED. 'XXXX' IS EITHER »ECCC»
(CORRECTED) OR 'ECCU' (UNCORRECTED). •PPN,WN=PPPPPP WWWWWW'
IDENTIFIES THE PHYSICAL PAGE AND WORD NUMBER OF THE ERROR. FOR AN

PAGE

EVENT L06GING IN PRIMOS

ECCC ERROR, THE PPN IS FOLLOWED BY »BIT = XX», WHERE 'XX' IDENTIFIES
THE BIT IN ERROR — 1-15 FOR BITS 1-1b, RP FOR RIGHT PARITY, ZZJ
C4, C5 FOR OTHER CHECK BITS, MB FOR MULTIBIT, NE FOR NO ERROR.
(THIS IS TAKEN FROM THE ECCC SYNDROME FIELD IN DSWSTATL.)
FOLLOWING THE BIT IDENTIFICATION IS •OP=X*, WHERE X IS 0 OR 1 AND

\ REFLECTS THE SETTING OF DSWSTATL BIT 6 (OVERALL PARITY).
_\ DSWPARITY IS DISPLAYED BUT NOT DECODED.

\POWER FAIL CHECK
_\
\ A POWER FAIL CHECK OCCURRED.

DISK XX ERROR DVNO= DDDDDD (TYPECODE) CRA= RRRRRR RRRRRR CYL= CCC HEAD=
HH REC0RD= RR RCRA= AAAAAA AAAAAA STATUS (ACCUM)= SSSSSS STATUS
(LAST)= LLLLLL RETRIES^ TT MMMMMM

A DISK ERROR OCCURRED DURING AN 'XX' OPERATION, WHERE 'XX1 IS »RD'
FOR READ OR 'WT» FOR WRITE. DVNO GIVES THE DEVICE NUMBER.
'TYPECODE' GIVES THE CONTROLLER NUMBER AND DEVICE TYPE (MHD =>
MOVING HEAD DISK, FHD => FIXED HEAD DISK, SM => STORAGE MODULE).
CR0 GIVES THE RECORD ADDRESS, WHICH IS BROKEN UP INTO CYL
(CYLINDER), HEAD, AND RECORD ADDRESS (ALL IN DECIMAL). FOR A READ
OPERATION, RCRA GIVES THE CRA READ ON A CRA ERROR. STATUS (ACCUM)
IS THE OR OF ALL STATUS BITS OBTAINED DURING RETRIES. STATUS
(LAST) IS THE STATUS OF THE LAST OPERATION.

RETRIES GIVES THE NUMBER OF RETRIES ATTEMPTED. IF RETRIES IS LESS
THAN 10, THE OPERATION WAS COMPLETED SUCCESSFULLY — MMMMMM WILL
BE ' (RECOVERED) '. !7 RETRIES = 10 AND THE ERROR COULD NOT BE
CORRECTED BY ECC, MMMMMM IS '(UNCORRECTABLE)*. IF AN ECC ERROR
HAS BEEN SUCCESSFULLY CORRECTED BY THE SOFTWARE, MMMMMM IS WORDNO =
AND CORRECTION=, WHICH GIVE THE WORD NUMBER IN THE RECORD AND THE
32-BIT CORRECTION PATTERN USED.

DISK MOUNT: PACKNAME ON DVNO

AN ADDISK OR STARTU COMMAND WAS ISSUED. THE INDICATED PACKNAME
WAS MOUNTED ON THE DISK IDENTIFIED BY 'DVNO'.

MACHINE CHECK USER= NN PC= PPPPPP

A PRIME 300 MACHINE CHECK OCCURRED. USER GIVES THE USER NUMBER
(DECIMAL), PC GIVES HIS PC AT THE TIME OF THE CHECK.

MEMORY PARITY

A PRIME 300 MEMORY PARITY ERROR OCCURRED (SEE ALSO NEXT ENTRY).

MEMORY PARITY PPN= PPPPPP WN= WWWWWW CONTENTS^ CCCCCC

A PRIME 300 MEMORY PARITY ERROR WAS ENCOUNTERED DURING A WARM
START MEMORY SCAN. GIVEN ARE THE PHYSICAL PAGE NUMBER (PPN), WORD
NUMBER OFFSET IN THE PAGE (WN), AND INCORRECT CONTENTS.

_ _ j-_

file:///POWER

EVENT LOGGING IN PRIMOS

MISSING MEMORY

A PRIMF 300 MISSING MEMORY CHECK OCCURRED.

LOGBUF OVERFLOW — NNNNN ENTRIES LOST

'NNNNN' (DECIMAL) EVENT ENTRIES WERE LOST DUE TO OVERFLOW OF
LOGBUF.

SHUTDOWN BY OPERATOR

THE OPERATOR ISSUED A 'SHUTDN ALL1 COPLAND. (THIS AUTOMATICALLY
DUMPS LOGBUF.) ':i:,.>

TYPE= TT D A T A = DDDDDD ...

A LOGREC ENTRY OF TYPE 1 0 - 1 5 WAS E N C O U N T E R E D . •TT" I N D I C A T E S THE
TYPE OF THE E N T R Y ; »DDDDDD ...' IS A DI S P L A Y OF UP TO 9 W O R D S OF
I N F O R M A T I O N FROM THE E N T R Y . _ _ ^

*** LO G R E C EMPTY ***

THIS M E S S A G E IS P R I N T E D IF L O G P R T FINDS NO E N T R I E S IN L O G R E C .

*** END OF LOGREC — NNNNN E N T R I E S , P P P P P P R O C E S S E D ***

THIS M E S S A G E IS P R I N T E D WHEN L O G P R T R E A C H E S THE END OF L O G R E C .
' N N N N N 1 (D E C I M A L) G I V E S THE NUMBER OF E N T R I E S IN L O G R E C NOJ
I N C L U D I N G D A T E / T I M E AND LOGBUF O V E R F L O W E N T R I E S . «PPPPP» GIVES
THE NUMB£R OF EN T R I E S P R O C E S S E D .

WHEN ALT THE E N T R I E S IN LOG R E C (OR OTHER INPUT F I L E) H A V E BEEN
P R O C E S S E D , LOGPRT W I L L N O R M A L L Y CLOSE THE FILE AND E X I T . I F , H O W E V E R ,
THE - P U R G E O P T I O N HAS BEEN S P E C I F I E D L O G P R T WILL P O S I T I O N TO THE
BEGINNING OF THE FILE BEFORE CLOSING, IN EFFECT EMPTYING THE FILE.

FINALLY, IF THE SPOOL OPTION IS IN EFFECT, LOGPRT SENDS THE OUTPUT FILE
TO THE SPOOL PROGRAM AND PRINTS THE NAME OF THE RESULTING SPOOL FILE.
IF THE DELETE OPTION IS IN EFFECT, THE OUTPUT FILE IS THEN DELETED.

3_W0DIFYING_IHE_EyjiNT_L0GGIN^

THE FOLLOWING TELLS HOW TO MAKE MODIFICATIONS TO THE EVENT LOGGING
MECHANISM. THE RELEVANT MODULES ARE FOUND AS FOLLOWS: FOR PRIMOS IV,
L0GEV1 AND LOGBUF ARE IN PR IAOO>KS>SEGA. L0GEV2 IS PRI400>KS>L0GEV2.
FOR PRIMOS III, L0GEV1 AND LOGBUF ARE IN PRI300>KS>TMAIN, L0GEV2 IS
PRI300>KS>L0GEV2. FOR BOTH PRIMOS III AND IV, LOGPRT IS IN SYSTEM.

"PAGT W

EVENT LOGGING IN PRIMOS

Iil_INCREASING_IHE_SI^E_0F_L0G8UF

LOGBUF IS DEFINED IN SEG4 (PRIMOS IV) OR TMAIN (PRIMOS III). THE
FIRST ENTRY IN THE BUFFER (LABEL LOGBUF) IS A 9-WORD COLD START
ENTRY. THE FOLLOWING BSZ DEFINES THE REMAINING SIZE OF LOGBUF
(CURRENTLY 63). IT CAN BE REDEFINED AS DESIRED.

3A2_ADDING_EVENI_IXPES

TO LOG A NEW EVENT TYPE, THREE ACTIONS ARE NECESSARY:

1) AN EVENT MESSAGE MUST BE BUILT THAT CONTAINS THE EVENT TYPE,
LENGTH OF THE MESSAGE, AND (OPTIONAL) DATA WORDS.

2) LOGEV1 MUST BE CALLED TO ENTER THE MESAGF INTO LOGBUF.

3) LOGPRT MUST BE MODIFIED TO RECOGNIZE THE NEW EVENT TYPE AND
APPROPRIATELY FORMAT THE DATA ASSOCIATED WITH THE EVENT. (NOTE
THAT LOGEV1 AND LOGEV2 DO NOT EXAMINE THE TYPE FIELD.)

3-2.1_EVENT_MESSAGE_FORMAT

AN EVENT MESSAGE CONSISTS OF A HEADER WORD FOLLOWED BY UP TO 23
OPTIONAL DATA WORDS. THE HEADER WORD CONSISTS OF THE EVENT TYPE
IN BITS 1-8 AND THE IOTAL MESSAGE LENGTH IN BITS 9-16. IN PMA, A
MESSAGE COULD BE DEFINED BY:

MSG DATA (5.LS.8)+3,DATA1,DATA2

THIS DEFINES A MESSAGE FOR EVENT TYPE 5
(INCLUDING HEADER WORD) IS 3 WORDS.

LENGTH OF MESSAGE

li^.^.CUREENILI.DEFINED^VENI^TYPES

CURRENTLY, THE FOLLOWING FVENT TYPES ARE DEFINED.

0 - COLD START
1 - WARM START
2 - DATE/TIME STAMP (LOGEV2)
3 - CHECKS (MACHINE, MEMORY PARITY, MISSING MEMORY)
A - DISK ERRORS
5 - LOGBUF OVERFLOW (LOGEV2)
6 - SHUTDN ALL
7 - PRIME 300 MACHINE CHECK
8 - PRIME 300 MEMORY PARITY
9 - PRIME 300 MISSING MEMORY

16 - DISK MOUNT
17 - POWFR FAIL CHECK

I N A D D I T I O N , E V E N T T Y P E S 1 0 - 1 5 A R E ACCEPTED BY LOGPRT. CSTF

PAGE TT

EVENT LOGGING IN PRIMOS

LISTING OF LOGPRT.)

3.2XJ> CALLING LQGEV1 _~.PE1MQ£-I1I

IN PMA

CALL LOGEV1
DAC MESSAGE

IN FORTRAN:

CALL LOGFVK^ESSAGE)

5 . 2 . 4 CAL.HNG L,QG£V1 — PgJMQS.IV.

IN PMA, CODE INSIDE SEG4:

JSXB LOGEVL (NOTE DIFFERENT NAME)
IP MESSAGE

IN PMA, CODE OUTSIDE SEG4:

CALL LOGEV1
AP MESSAGE,SL

IN FORTRAN:

CALL LOGEV1(MESSAGE)

2-2i5_MODIFYlNG_LOG.PRI

CURRENTLY, LOGPRT RECOGNIZES AND FORMATS DATA FOR EVENT TYPES
0-9, 16, AND 17. TYPES 10-15 ARE ACCEPTED, BUT RESULT IN A
PRINTOUT OF ONLY

TYPE=<TYPE> DATA=<W0RD1> <W0RD2> <W0RD9>

(NOTE THAT ONLY 9 DATA WORDS ARE PRINTED FOR THESE TYPES.) T0~
ADD A NEW TYPE, ADD A LABEL TO THE COMPUTED GOTO FOLLOWING
STATEMENT $400. AT THE NEW LABEL (BETWEEN $1950 AND $2000), CALL
THE STORE ROUTINE TO PERFORM THE REQUIRED FORMATTING.

THE CALLING SEQUENCE FOR STORE IS AS FOLLOWS:

CALL STORE (TEXT,TXTLEN,ARRAY,NW,DEC)

TEXT A TFXT STRING TO BE PRINTED.

TXTLEN THE LENGTH IN CHARACTERS IN TEXT. IF ZERO, NO TEXT IS

PAGE 12

EVENT LOGGING IN PRIMOS

PRINTED

ARRAY AN ARRAY OF WORDS TO RE TRANSLATED AND ENTERED IN THE
OUTPUT LINE. ENTRYC1) IS THE FIRST DATA WORD OF THE

EVENT MESSAGE. ENTTYP
LENGTH OF THE ENTRY.

AND ENTLEN CONTAIN THE TYPE AND

N W THE NUMBER OF WORDS IN ARRAY
TRANSLATED.

IF ZERO, NO WORDS ARE

DEC OCTAL/DECIMAL FLAG.
WITH NO LEADING
TRANSLATION IS TO

IF ZERO, TRANSLATION IS TO OCTAL
ZERO SUPPRESSION. IF NON-ZERO,

DECIMAL WITH LEADING ZEROES
SUPPRESSED.

NOTE THAT THE TOTAL LENGTH OF THE TEXT TO BE STORED
(*TX.TLEN + NW*7) SHOULD NOT EXCEED 67 — THE
CAN BE PRINTED ON A TTY WITH AN INDENT
AFTER THE FIRST FOR AN ENTRY ARE INDENTED

MAXIMUM LENGTH THAT
IN EFFECT. (ALL LINES
5 SPACES.) IF THE

LENGTH OF TEXT IS TOO LONG, IT WILL BE TRUNCATED.

THE BREAK SUBROUTINE (NO ARGUMENTS) CAN BE USED TO START A NEW
LINE. INDENTING MUST BE PERFORMED EXPLICITLY AFTER BREAK
CALLED (BY STARTING THE NEXT TEXT STRING WITH 4 BLANKS).

IS

AFTER FORMATTING THE ENTRY, GOTO 200Q. CODE
FINISHES THE FORMATTING AND OBTAINS THE NEXT ENTRY

AT THAT LABEL
FROM LOGREC.

"TO REBUILD LOGPRT, RUN THE COMMAND FILE C_LOGPRT IN SYSTEM (OR
C LLOGPRT IF A FULL LISTING IS DESIRED). THIS WILL CREATE A RUN
FILE CALLED *LOGPRT. *LOGPRT CAN THEN BE MOVED TO CMDNCO AND
RENAMED TO LOGPRT

3.3 CHANGING THE SIZE OF LOGREC

THE SIZE OF LOGREC (OVER WHICH THE 'EXCEEDING. MESSAGE IS
\ PRINTED) IS DEFINED BY
\ VALUE OF LRQUOT IS SET BY
\ SECTION 1.3).

THE FIGCOM VARIABLE LRQUOT IN SEG14. THE
THE CONFIGURATION COMMAND LOGREC (SEE

3.4_CHANGINGJS0GPRI1S_D.EFAULI_^^

THE DEFAULT
INPNAM. THE

INPUT NAME — ,<0>CMDNCD>LOGREC' — IS IN THE ARRAY
SIZE OF INPNAM AND LENGTH OF THE NAME, INNAML, SHOULD

BE SET TO THE NUMBER OF WORDS AND CHARACTERS IN INPNAM RESPECTIVELY,
THE DEFAULT OUTPUT NAME (LOGLST) IS IN THE ARRAY OUTNAM.

PAGE 13

EVENT LOGGING IN PRIMOS

TABLE OF CONTENTS

1 GENERAL INFORMATION 3
1.1 FIRST-LEVEL EVENT LOGGER ~ LOGEV1
1.2 SECOND-LEVEL LOGGER — LOGEV2
1.3 THE LOGREC CONFIGURATION COMMAND..
1.4 LOGPRT -- DUMP CONTENTS OF LOGREC . ..4

2 LOGPRT PROCESSING 6

3 MODIFYING THE EVENT LOGGING l*l ECH ANISF?
3.1 INCREASING THE SI7E OF LOGBUF

10
11

3.2 ADDING EVENT TYPES
3.3 CHANGING THE SIZE OF LOGREC
3.4 CHANGING LOGPRT'S DEFAULT INPUT/OUTPUT FILENAMES

11
13
13

PAGE 14

D A T E : JANUARY 1 8 , 1 9 7 9
REV 3

S U B J E C T : MIDAS FOR REV 16

ABSTRACT

THIS DOCUMENT DESCRIBES A MAJOR PERFORMANCE IMPROVEMENT FOR REV. 16
MIDAS. A DISCUSSION OF SEVERAL ENHANCEMENTS AND BUG FIXES IS ALSO
INCLUDED

PAGE

OVERVIEW

MIDAS APPLICATIONS ON P350, P4Q0, AND P500 COMPUTERS WILL OPERATE
SIGNIFICANTLY FASTER AT REV 16. IN ADDITION, THE PERFORMANCE
IMPROVEMENT REQUIRES NO MODIFICATION OF EITHER USER PROGRAMS OR
EXISTING MIDAS FILES.

THE PERFORMANCE IMPROVEMENT IS DUE TO A CHANGE IN THE WAY INDEX ENTRIES
ARE ADDED TO A MIDAS FILE. AS ENTRIES ARE INSERTED, MIDAS DYNAMICALLY
RESTRUCTURES THE APPROPRIATE INDICIES. PREVIOUS VERSIONS OF MIDAS
INSERTED NEW INDEX ENTRIES INTO OVERFLOW CHAINS- AS THE CHAINS GREW
LONGER, PERFORMANCE WAS DEGRADED. TO IMPROVE PERFORMANCE, USERS
PERIODICALLY EXECUTED UTILITY PROGRAM REMADE WHICH ELIMINATED THE
OVERFLOW CHAINS. REV 16 MIDAS HAS ELIMINATED THE USE OF OVERFLOW
CHAINS AND THEREFORE THE NECESSITY TO EXECUTE REMAKE. BECAUSE INDICIES
ARE DYNAMICALLY MODIFIED, INSERTION AND DELETION OPERATIONS OPERATE
FASTER THAN IN PREVIOUS MIDAS RELEASES.

AFTER INSTALLING REV 16, REMAKE MUST BE EXECUTED ONCE TO ELIMINATE ANY
OVFRFLOW CHAINS. THEREAFTER REMAKE MUST NOT BE USED. NOTE THAT REV 16
MIDAS WILL PRINT 'STOP! REMAKE THIS FILE!1 AND ABORT IF ANY OVERFLOW
ENTRIES ARE ENCOUNTERED.

FILES PROCESSED BY REV 16 MIDAS MAY NOT BE USED WITH REV 15 MIDAS.
HOWEVER, A NEW UTILITY, *REVERT, WILL CONVERT SUCH A FILE TO A FORMAT
WHICH IS COMPATIBLE WITH REV 15 MIDAS.

IN ADDITION TO GREATER SPEED, REV 16 MIDAS HAS IMPROVED FILE SPACE
UTILIZATION. EARLIER VERSIONS OF MIDAS SIMPLY MARKED' DELETED INDEX
ENTRIES. THE SPACE OCCUPIED BY THE DELETED ENTRIES WAS NOT REUSABLE
UNTIL THE FILE HAD BEEN RESTRUCTURED BY THE REMAKE UTILITY. MIDAS NOW
DYNAMICALLY RECOVERS AND MAY REUSE THE SPACE OCCUPIED BY DELETED INDEX
ENTRIES.

MIDAS_USER_lNI£RF&£E_C,H&N.&iS

THE CALLING SEQUENCE OF EXISTING MIDAS FORTRAN USER INTERFACE
SUBROUTINES HAS NOT BEEN CHANGED. HOWEVER, TWO NEW SUBROUTINES HAVE
BEEN ADDED AND A NEW FUNCTION HAS BEEN ADDED TO NEXT$. IN ADDITION,
THE OPERATION OF DELETS HAS BEEN MODIFIED.

UMODES

THE FIRST SUBROUTINE, UMODE$, ALLOWS AN APPLICATION PROGRAM TO INDICATE
THAT IT WILL BE THE ONLY PROGRAM ACCESSING A PARTICULAR MIDAS FILE.
THE MIDAS FTLE HANDLER NORMALLY ASSUMES THAT A MIDAS FILE MAY BE
ACCESSED BY SEVERAL APPLICATIONS SIMULTANEOUSLY. AS A RESULT, INDEX
AND DATA SEGMENT SUBFILES ARE OPENED AND CLOSED WITH EACH CALL TO
MIDAS. IF ONLY ONE APPLICATION IS TO ACCESS A MIDAS FILE, THEN A CALL
TO UMODES ALLOWS MIDAS TO AVOID UNNECESSARY OPENING AND CLOSING OF

SEGMENTS

PAGE

PRELIMINARY STUDIES INDICATE THAT UMQDES MAY PROVIDE ABOUT A
50% PERFORMANCE IMPROVEMENT. THUS, UMODES MAY BE ESPECIALLY USEFUL FOR
FORTRAN, MQL, COBOL, BASIC, AND RPG BENCHMARKS-

CALLING SEQUENCE

CALL UMODE$(FILE^UNIT,FUNCTION,STATUS)

FILE_UNIT — > UNIT UPON WHICH THE MIDAS DIRECTORY IS OPEN.

FUNCTION — > 1 <MM$SUM) INDICATES THAT THE FILE IS TO BE
ACCESSED ONLY BY THE CALLING PROGRAM. MIDAS
WILL THEN LEAVE SE6MENTS OPEN BETWEEN CALLS

— > 0 (MM$MUM) INDICATES THAT THE FILE WILL BE
ACCESSED BY POSSIBLY MORE THAN ONE PROGRAM.
MIDAS WILL CLOSE SEGEMENTS BETWEEN CALLS.
THIS IS THE DEFAULT MODE.

STATUS — > 0 NO ERROR.
— > 1 TOO MANY FILES. PARAMTER MFILES IN KPARAM

DEFINES THE NUMBER OF FILES WHICH MAY BE
IN SINGLE USERS MODE AT ONE TIME.

— > ILLEGAL
ILLEGAL

FUNCTION.
FILE UNIT

NOTE THAT IT IS THE RESPONSIBILITY OF THE USER TO CONTROL THE NUMBER OF
PROGRAMS ACCESSING A MIDAS FILE. MIDAS HAS NO WAY OF KNOWING HOW MANY
PROGRAMS ARE ACTUALLY USING A MIDAS FILE.

BEFORE AN APPLICATION PROGRAM CLOSES A MIDAS FILE, THE FILE MUST BE
RETURNED TO THE MULTIUSER MODE VIA A CALL TO UMODES. THIS IS NECESSARY
TO ALLOW MIDAS TO CLOSE SEGMENTS WITHIN THE MIDAS FILE.

EXAMPLE

CALL UMODE$(FILUN,1,STATUS)
SETS THE FILE OPEN ON FILUN TO SINGLE USER MODE

CALL UMODE$(FILUN,0,STATUS)
INDICATES TO MIDAS TO CLOSE THE SFGMENTS FOR THE

C MIDAS DIRECTORY OPEN ON FILUN. MIDAS WILL
C SUBSEQUENTLY CLOSE SEGMENTS AFTER EACH CALL TO
C MIDAS.

CALL UMODE$<0,0,STATUS)
MIDAS WILL CLOSE ALL OF THE SEGMENTS THAT I T HAS

ALL FILES ARE RETURNED TO MULTI-USER MODE OPENED

GDATAS

WITH THE SECOND NEW USER INTERFACE SUBROUTINE, USERS CAN
SERIALLY ACCESS DATA RECORDS IN A MIDAS FILE.

CALLING SEQUENCE

PAGE

CALL GDATA$(FILE_UNIT,FUNCTION,BUFFER,SIZE,STATUS)

FILE UNIT — > MIDAS DIRECTORY FILE UNIT.

FUNCTION — > :200 (FL$FST) RETRIEVE THE FIRST DATA RECORD
— > :100 (FLSNXT) RETRIEVE THE NEXT RECORD.

BUFFER — > USER DATA BUFFER.

SIZE — > SIZE IN BYTES OF THE BUFFER

STATUS ~ > 0 NO ERROR.
— > >0 SYSTEM ERROR CODE.
— > -1 ILLEGAL FUNCTION CODE
— > -2 BAD INDEX DESCRIPTOR. (MIDAS FILE)
— > -3 INVALID RECORD POSITION.

UPON RETURN FROM 6DATAS, THE BUFFER CONTAINS THE DATA RECORD. NOTE
THAT CALLS TO ODATAS SHOULD NOT BE MIXED WITH CALLS TO OTHER MIDAS DATA
ACCESS ROUTINES SUCH AS FINDS.

NEXTS FUNCTIONALITY,

NEXTS MAY NOW BE USFD TO RETRIEVE THE RECORD CORRESPONDING TO THE INDEX
ENTRY PRECEDING THE CURRENT ENTRY. THIS FUNCTION IS DETERMINED BY BIT
11 IN THE FLAGS PARAMETER. (FLAGS = :40) A TYPICAL CALL TO NEXTS WOULD
USE A FLAGS VALUE OF :140G4O. THAT IS, BIT 1 — > USE ARRAY, BIT 2 — >
RETURN ARRAY, BIT 11 — > RETRIEVE PRECEDING RECORD.

\ADDl$_f3QDIFlCAI10N

\WHEN INSERTING A SECONDARY INDEX ENTRY VIA A CALL TO ADD1S, MIDAS WILL
\NOT MODIFY THE CONTROL ARRAY PARAMETER SUPPLIED BY THE USER EVEN IF THE
\FLSRET BIT IS SET IN THE FLAGS PARAMETER.

J^kglg-ffODI FICAJIQN

SINCE DELETS CAUSES A DELETED INDEX ENTRY TO BE REMOVED FROM THE INDEX,
THE CURRENT POSITION IN THE INDEX IS MODIFIED BY THE DELETS OPERATION.
IN APPLICATIONS IN WHICH BIT 1 OF THE FLAGS PARAMETER (USE ARRAY BIT)
IS SET, USERS MUST ALSO SET BIT 2 (RETURN ARRAY) IN ORDER TO MAINTAIN A
VALID POSITION IN THE INDEX. THIS CASE OCCURS FREQUENTLY WHEN USING
DELETS IN CONJUNCTION WITH NEXTS TO DELETE RECORDS WHILE SEQUENTIALLY
TRAVERSING AN INDEX.

file:///WHEN
file:///FLSRET

PAGF

FILE UNIT HANDLING

SEVERAL CHANGES HAVE
FILE UNITS. INTERNALLY

BEEN MADE TO THE MANNER IN WHICH MIDAS HANDLES
. MIDAS USES FILE UNITS TO ACCESS INDEX AND DATA

SEGMENTS OF A MIDAS FILE. WHEN ASSIGNING FILE UNITS, MIDAS SEARCHES
FROM UNIT 63 DOWNWARD UNTIL AN AVAILABLE UNIT IS FOUND. THIS FILE UNIT
VALUE IS THEN INSERTED INTO TABLE SEG.

PARAMETER STSIZ ,DEFINED IN FILES LONGPL, LDPOOL, AND MIDPOL,
DETERMINES THE SIZE OF THE TABLE AND THEREFORE THE NUMBER OF FILE UNITS
WHICH MIDAS MAY UTILIZE SIMULTANEOUSLY. IF THE TABLE IS FULL AND
ANOTHER UNIT IS NEEDED, MIDAS CLOSES THE LEAST RECENTLY OPENED FILE
UNIT AND OPENS THE NEW SEGMENT ON THAT FILE UNIT.

MIDAS UTILITY PROGRAM CHANGES

KBUILD ~ SEVERAL BUGS HAVE BEEN FIXED. SEE THE SECTION
DESCRIBING T.A.R.'S.

REPAIR — THE REPAIR UTILITY HAS BEEN ELIMINATED.

REMAKE — REMAKE MAY ONLY BE USED WITH FILES EARLIER
THAN REV 16. NOTE THAT REMAKE MUST BE USED
ON EACH REV 15 (OR EARLIER) FILE BEFORE THE
FILE MAY BE USED WITH REV 16 MIDAS.

CREATK — SEVERAL BUGS HAVE BEEN FIXED. IN ADDITION,
CREATK NOW OPENS AND CLOSES ONLY THOSE FILE
UNITS THAT IT ACTUALLY NEEDS. AS A RESULT,
CREATK CAN BE RUN FROM A COMINPUT FILE.

•REVERT — *REVERT
USERS TO

IS NEW AT REV
CONVERT FILES

16. THIS UTILITY
WHICH HAVE BEEN

ALLOWS

PROCESSED BY REV 16 MIDAS TO A STRUCTURE
WHICH IS COMPATIBLE WITH EARLIER RELEASES
•REVERT IS CREATED BY C RVRT IN UFD MIDAS
NOTE THAT *REVERT SETS THE FILE REV STAMP TO 15.0.

Ii£iEAiS_PRO£ESS.£D

T.A.R. NUMBFR

10941

PRODUCT

KBUILD. PUILDING FROM A BINARY FILE

13105 K B U I L D . BINARY OPTION

13128

20458

KBUILD.

KBUILD.

12815 MIDAS LIBRARY. FILE UNIT CONFLICTS

PAGE

ELIMINATED FOR P400 USERS.

12816 CREATK. USE OF FORTRAN I/O WAS NOT
ELIMINATED.

15431 CREATK. KEY TYPE OPTION «S ' WORKS
' R ' IS I N V A L I D .

12636 REMAKE. THE PROBLEM WITH ATTEMPTS TO
REMAKE AN EMPTY INDEX HAS BEEN ELIMINATED

MODIFICATIONS HAVE BEEN MADE TO ELIMINATE SEVERAL PROBLEMS
WHICH COULD ARISE IN MULTI-USER APPLICATIONS.

A) IF A 'DEADLOCK' OCCURS DURING A SECONDARY INDEX SEARCH,
MIDAS WILL NOT DELETE ANY INDEX ENTRIES WHICH POINT
TO DELETED DATA RECORDS.

B) IF A 'DEADLOCK' OCCURS DURING A DELETE OPERATION,
MIDAS WILL RESTART DELETS.

C) IF A 'DEADLOCK' OCCURS DURING AN INSERT (ADD1$) OPERATION,
MIDAS WILL NOT RELEASE ITS FILE UNITS. IN ADDITION,
THE SEGMENT CONTAINING THE ROOT INDEX BLOCK IS NEVER
CLOSED UNTIL THE INSERT HAS COMPLETED. NOTE THAT TWO
PROCESSES, DOING INSERTS, CAN NEVER DEADLOCK.

USERS SHOULD BE AWARE THAT IN MULTIUSER APPLICATIONS THE
CURRENT POSITION OF A PROCESS IN A MIDAS FILE MAY BE
MODIFIED BY ANOTHER PROCESS.

\NEW_ERRQR_CODE

\WHEN A CALL TO MIDAS REQUESTS THAT THE CONTROL ARRAY PARAMETER BE USED,
\MIDAS NOW CHECKS TO BE CERTAIN THAT THE INDEX ENTRY LOCATED BY MIDAS IS
\ACTUALLY THE ENTRY SPECIFIED BY THE CONTROL ARRAY PARAMETER. If THE
\ENTRIES ARE NOT THE SAME, THEN MIDAS RETURN'S AN ERROR CODE OF 13.
V'MIDAS ERROR 13" IS ALSO PRINTED AT THE TERMINAL EXCEPT IN BASICV.
\NOTE THAT THIS CHECKING P_OES_NOT OCCUR DURING AN INSERTION OPERATION.
\(IE. CALLS TO ADD1S, COBOL WRITE'S, BASICV ADD'S)

\THE CONTROL ARRAY PARAMETER IS ESSENTIALLY A "CURRENT ENTRY"
\DESCRIPTOR. ERROR 13 MAY OCCUR IF THE "CURRENT INDEX ENTRY" HAS BEEN
\CHANGED SINCE THE POSITION WAS ESTABLISHED. IN A TWO USER APPLICATION
\FOR EXAMPLE, AN ERROR 13 MAY OCCUR FOR PROCESS A IF PROCESS B INSERTS
\OR DELETES AN INDEX ENTRY IN THE INDEX BLOCK IN WHICH PROCESS
UURRENT ENTRY.

A HAS A

\ERROR CODE 13 MAY ALSO BE 6FNERATED BY A SINGLE PROCESS IF THE PROCESS
MNSERTS OR DELETES AN INDEX ENTRY IN THE SAME BLOCK IN WHICH IT HAS A
\CURRENT ENTRY. A PROCESS WHICH ENCOUNTERS AN ERROR 13 MAY ATTEMPT TO
\RE-ESTABLISH THE "CURRENT POSITION" BY DOING A KEYED ACCESS.

file:///NEW_ERRQR_CODE
file:///WHEN
file:///MIDAS
file:///ACTUALLY
file:///ENTRIES
file:///NOTE
file:///DESCRIPTOR
file:///CHANGED
file:///ERROR
file:///CURRENT
file:///RE-ESTABLISH

PAGE

TAILORING MIDAS

THE SIZE OF THE INTERNAL BUFFER POOL IS DETERMINED BY TWO PARAMETERS.
TO MODIFY THE DEFAULT SIZE, SET THE PARAMETER CTLASZ TO THE NUMBER OF
INDEX BLOCKS
DEFAULT IS 6.
DEFAULT VALUE

TO BE IN THE BUFFER POOL- THE MINIMUM VALUE IS 2 AND THE
PARAMETER RECLNT DETERMINES THE SIZE OF A BUFFER- THE
IS 1024 WORDS.

INSTALLATION NOTES

1. MIDAS IS SUPPLIED WITH THE 64V MODE LIBRARY, VKDALBy
INSTALLED AS A SHARED LIBRARY
BUILDS THE SHARED LIBRARY.

COMMAND FILE C SKLB

EACH MIDAS FILE
UTILITY PROGRAM
BE USED.

MUST BE RESTRUCTURED WITH THE MIDAS
REMAKE BEFORE THE NEW LIBRARY CAN ;

SUBJECT: RUNOFF FOR RELEASE 16.0

TWO NEW COMMANDS ARE AVAILABLE: .EODD (EJECT ODD) AND .EEVEN (EJECT
EVEN), MINIMAL ABBREVIATIONS ARE .EO AND .EE. THESE COMMANDS CAUSE AN
EJECT TO A NEW PAGE. A SUBSEQUENT EJECT IS THEN CAUSED IF THE NUMBER
OF THE NEW PAGE IS EVEN (FOR .EO) OR ODD (FOR .EE). THESE COMMANDS
FUNCTION INDEPENDENTLY OF WHETHER THE PAGE NUMBER HAS BEEN SET WITH THE
.PAGE COMMAND OR IS BEING DISPLAYED.

SUBJECT: AVAIL - REV. 16

THE AVAIL COMMAND, USED TO GENERATE THE CURRENT RECORD AVAILABILITY
STATUS OF STARTED-UP DISKS, HAS BEEN MODIFIED SO AS TO ACCEPT
VOLUMENAMES UP TO 32 CHARACTERS IN LENGTH. THE COMMAND WILL YET
CONTINUE TO SUPPORT OLD STYLE PARTITIONS AND THEIR 6 CHARACTER NAMES.

IN ADDITION, THE AVAIL COMMAND
LOGICAL DEVICE NUMBER, STATED IN

WILL NOW ACCEPT AS AN ARGUMENT THE
DECIMAL DIGIT NOTATION, FOR THE

PARTITION DESIRED. THE
DD', WHERE DD REPRESETS
SUPPORTED BY THE SYSTEM.

FORMAT FOR WHICH, MUST BE ENTERED AS '-LDEV
THE LDEV. CURRENTLY, 18 PARTITIONS ARE

WHEN A LDEV IS GIVEN WHICH DOES NOT SUPPORT A
PARTITION, ONE OF TWO ERROR MESSAGES WILL BE FORTHCOMING,

'DISKRAT NOT FOUND FOR LDEV
OR

•SYSTEM SUPPORTS LDEV 0:17

SUBJECT: APPLIB (VAPPLB) - APPLICATIONS LIBRARY

ATTACHED IS A DETAILED DESCRIPTION OF THE REV.16 APPLICATIONS
LIBARAY (APPLIB) AND ITS V-MODE VERSION (VAPPLB) LOCATED IN UFD = LIB.
FOR FURTHER INFORMATION CONTACT ERIC STANMYER (SUBSYSTEMS).

ALL SUBMISSIONS,
APPRECIATED.

COMMENTS, CRITICISMS AND SUGGESTIONS ARE

THE REV.16 APPLICATIONS LIBRARY CONTAINS SEVERAL NEW SECTIONS.
SUBSECTION 2.4, TITLED "SERVICE ROUTINES" HAS BEEN RESTUCTURED INTO THE
FOLLOWING SUBSECTIONS:

2.4 STRING MANIPULATION ROUTINES • :

2.5 USER QUERY ROUTINES
2.6 SYSTEM INFORMATION ROUTINES
2.7 CONVERSION ROUTINES
2.8 MATHEMATICAL ROUTINES
2.9 PARSING ROUTINES

SEVERAL NEW ROUTINES HAVE ALSO BEEN ADDED FOR REV.16, THESE ARE

FILE SYSTEM:

1. TSCN$A(KEY,UNITS,ENTRY,MAXSIZ,ENTSIZ,MAXLEV,LEV,CODE)

TSC
TREE S
SGDPSS

N$A IS
TRUCTU
TO REA

A L
RE
D UF

OGIC
(ST A
D AN

AL FUNCT
RTING W
D SEGMEN

ION THAT
ITH THE HO
T DIRECTOR

SCANS T
ME U F D)
Y ENTRIE

HE FI
USING
S INTO

LE SYSTEM
RDENSS AND
THE ENTRY

ARRAY.
CURRENT
STRUCTU

EACH
LEVE

RE. T

CALL
L OR
HE V

TO
THE

ARIA

TSCNSA
FIRST F

BLE LEV

RETURNS
ILE ON THE
IS USED

THE NEX
NEXT LO

TO KEEP

T FIL
WER LE

TRAC

E ON THE
VEL OF THE
K OF THE

CURRENT LEVEL. FOP EXAMPLE, AFTER THE FIRST CALL
(WITH LEV=H), LEV WILL PE RETURNED AS 1, AND ENTRY(
CONTAIN THE UFD ENTRY DESCRIBING THE FIRST FILE I

TO TSCNSA
1,1) WILL
N THE HOME

UFD. I
TSCNSA,
FOR THE

THIS
LEV

FIRST

FIL
WIL
FIL

E IS
L B
E IN

A SUBUF
E 2, AND
THE SUB

D, FOLLOW
ENTRY(1,2

UFD.

ING THE
) WILL C

NEXT
ONTAIN

CALL TO
THE ENTRY

PAGE REV. 2

STRING MANIPULATION:

1 . TYPESACKEY,STRING,LENGTH)

TYP
STRING
S P E C I F I

E$A IS A
TO DET

ED BY KE

LOGIC
ERMINE
Y . A

AL FUNCTIO
IF IT

STRING I S

N THAT
CAN BE
NAME I F

WILL
INT

IT C

TEST
ERPRETED
ONTAINS

A CHAR
AS THE

AT LEAS

ACTER
TYPE

T ONE
ALPHABE
A DECIM
NUMBER

TIC OR S
AL NUMBE

IF IT C

PECIAL
R I F I
ONTAIN

CHARACTER
T CONTAINS
S ONLY THF

(OTHER
ONLY TH
DIGITS

THAN
E DI
0 -

A LEADI
GITS 0 -
7 , AND A

NG + OR
9 , AN
HEXADE

OCTAL
CIMAL

NUMBER
A - F
ANY NUM

I F IT CO
(UPPER C
BER OF B

NTAINS
ASE ON
LANKS

ONLY THE
L Y) . A NU
BETWEEN TH

DIGITS 0
MBER MAY
E SIGN

- 9
HAV
AND

AND THE
E A LEAD

THE F

CHARA
ING SIG
IRST D

CTERS
N AND
I G 1 T ,

HOWEVER
ALLOWED

LEA

IMBEDD
A NUM

DING AND

ED BL
BER MU

TRAIL

ANKS WITH
ST ALSO HA
ING BLANKS

IN THE
VE AT LE

ARE IGN

NUM
AST
ORED

BER I T S
ONE D I G I
- THE

ELF ARE NOT
T .
FUNCTION IS

TRUE I
USED, 0
TO ZER

F STRIN
THERWISE
0) WILL

G SAT
IT IS

ONLY

I S F I E S
FALSE.
RETURN

TH
A

A

E CONDIT
NULL ST

FUNCTION

IONS
RING

VAL

REQUIRE
(I E . L

UE OF TR

D BY TH
ENGTH
UE IF K

E KEY
EQUAL
EY IS

ASNAME.
TYP

HAS WH

E$A AVOIDS THE PROBLEM OF DECIMAL OVERFLOW THAT CNVASA
FN IT IS USED TO DETERMINE IF A STRING IS A DECIMAL

NUMBER (CNVASA I S FALSE IF DECIMAL OVERFLOW OCCURS)

2 . MSTR$A(A ,ALEN,B ,BLEN)

3 .

MSTRSA IS AN INTEGER FUNCTION THAT WILL
STRING, A , TO THE DESTINATION STRING, B . I F

MOVE THE
THE SOURCE

SOURCE
STRING

IS LONGER THAN THE DESTINATION STRING I T WILL BE TRUNCATED AND
I F IT I S SHORTER IT WILL BE PADDED WITH BLANKS. THE SOURCE AND
DESTINATION STRINGS MAY OVERLAP. THE FUNCTION VALUE WILL BE
EQUAL TO THE NUMBER OF CHARACTERS MOVED (EXCLUDING BLANK
PADDING) . I F EITHER STRING I S NULL (I E . LENGTH EQUAL TO ZERO)
NO CHARACTERS ARE MOVED AND THE FUNCTION WILL BE EQUAL TO ZERO-n u i . n n n n i . i L I \ O n n. i_ i i v v L . u n i i u i i • u i u n v i

M S U B $ A (A , A L E N , A F C , A L C , B , B L E N , B F C , B L C)

MSUBSA IS AN INTEGER FUNCTION THAT WILL MOVE THE SOURCE
SUBSTRING CONTAINED IN A TO THE DESTINATION SUBSTRING CONTAINED
IN B . IF THE SOURCE SUBSTRING IS LONGER THAN THE DESTINATION
SUBSTRING I T WILL BE TRUNCATED AND I F I T IS SHORTER I T WILL BE
PADDED WITH BLANKS. THE SOURCE AND DESTINATION SUBSTRINGS MAY
OVERLAP.

I F EITHER SUBSTRING IS NULL (I E . LENGTH EQUAL TO ZERO) NO
CHARACTERS ARE MOVED AND THE FUNCTION WILL BE EQUAL TO ZERO,
OTHERWISE I T IS EQUAL TO THE NUMBER OF CHARACTERS MOVED
(EXCLUDING BLANKS USED FOR PADDING) .

PAGE REV. 2

CSTR$A(A,ALEN,B,BLEN)

CSTR$A TS
FOR EQUALITY

A LOGICAL FUNCTION THAT WILL COMPARE TWO STRINGS
THE FUNCTION WILL RE TRUE IF EACH CHARACTER IN

STRING A MATCHES THE CORRESPONDING CHARACTER IN STRING B, OR IF
BOTH STRINGS ARE NULL (IE. LENGTH EQUAL TO ZERO), OTHERWISE
THE FUNCTION WILL BE FALSE. COMPARISION IS ONLY MADE ON THE
NUMBER OF CHARACTERS EQUAL TO THE OPERATIONAL LENGTH OF EACH
STRING (IE. TRAILING BLANKS ARE IGNORED).

CSTRSA AVOIDS THE RESTRICTIONS PLACED ON NAMEQS CONCERNING
NUMERIC FIELDS AND TRAILING BLANKS.

CSUBSA(A,ALEN,AFC,ALC,B,BLEN,BFC,BLC)

CSUB$A
SUBSTRINGS

IS A LOGICAL
FOR EQUALITY.

FUNCTION THAT WILL
IF EACH CHARACTER IN

COMPARE TWO
THE A SUBSTRING

MATCHES THE CORRESPONDING CHARACTER IN THE B SUBSTRING, OR BOTH
SUBSTRINGS ARE NULL (IE. LENGTH EQUAL TO ZERO) THE FUNCTION
WILL BE TRUE. IF TWO CORRESPONDING CHARACTERS DO NOT MATCH, OR
IF THE
WILL BE

LENGTHS
FALSE .

OF THE SUBSTRINGS ARE NOT EQUAL THE FUNCTION

LSTR$A(A,ALEN,B,BLFN,FCP,LCP)

LSTRSA IS A LOGICAL FUNCTION THAT WILL SEARCH STRING B FOR
THE FIRST OCCURENCE OF STRING A. IF STRING
FUNCTION WILL BE TRUE AND FCP AND LCP WILL BE
CHARACTER POSITIONS OF THE SUBSTRING IN B THAT

A IS FOUND THE
EQUAL TO THE
MATCHES STRING

A. IF STRING A IS NOT FOUND
LENGTH EQUAL TO ZERO) THE
LCP WILL BE EQUAL TO ZERO.

OR IF EITHER STRING IS
FUNCTION WILL BE FALSE

NULL (IE.
AND FCP AND

EACH STRING IS LOGICALLY TRUNCATED
LFNGTH BEFORE THE SFARCH IS PERFORMED.

TO ITS OPERATIONAL

LSUR$A(A,ALEN,AFC,ALC,B,BLEN,BFC,BLC,FCP,LCP)

LSUBSA IS A LOGICAL FUNCTION THAT WILL SEARCH THE SUBSTRING
CONTAINFD IN B
CONTAINED IN A.
TO THE CHARACTER

FOR THE FIRST OCCURENCE OF THE SUBSTRING
IF A MATCH IS FOUND FCP AND LCP WILL BE EQUAL

POSITIONS IN B OF THE MATCHING SUBSTRING AND
THE FUNCTION WILL BE TRUE. IF A MATCHING SUBSTRING CANNOT BE
FOUND OR IF EITHER SUBSTRING IS NULL (IE. LENGTH EQUAL TO
ZERO) THE FUNCTION WILL BE FALSE AND FCP AND LCP WILL BE EQUAL
TO ZERO

8. JSTPSA(KEY,STRING,LENGTH)

JSTR$A IS A LOGICAL FUNCTION THAT WILL LEFT
JUSTIFIY A STRING WITHIN ITSELF. THE FUNCTION WILL

OR RIGHT
BE TRUE IF

JUSTIFICATION IS SUCCESSFUL, FALSE IF THE STRING LENGTH IS LESS
THAN ZERO OR IF A BAD KEY IS SPECIFIED.

PAGE REV. 2

CONVERSION:

CNVB$A(NUMKEY,VALUE,NAME,NAMLEN) 1.

CNVBSA IS AN INTEGER FUNCTION USED TO CONVERT
BINARY NUMBER INTO AN ASCII DIGIT STRING FOR DECIi
HEXADECIMAL NUMBERS. THE RETURNED DIGIT STRING

AN INTEGER*4
IAL, OCTAL, OR
WILL BE RIGHT

JUSTIFIED IN NAME PRECEEDED BY LEADING BLANKS
(DEPENDING ON KEY). IF VALUE IS NEGATIVE AND TO BE
SIGNED DEC I MAL , NAME WILL BEGIN WITH AN INITIAL '-'

OR ZEROS
TREATED AS
SIGN. IF

THE NUMBER OF DIGITS CONVERTS SUCCESSFULLY, THE FUNCTION VALUE
IS THE NUMBER OF DIGITS IN NAME, IF NOT THE FUNCTION VALUE IS
ZERO AND NAME WILL BE BLANK.

PARSING

1. CMDL$A(KEY,KWLIST,KWINDX,OPTBUF,BUFLEN,GPTION,VALUE,KWINFO)

CMDL$A IS A LOGICAL FUNCTION FOR PARSING PR
COMMAND LINES (IE. A LINE COMPOSED OF -KEYWORDS
FOLLOWED BY A SINGLE ARGUMENT). EACH CALL TO TH

IMOS TYPE
OPTIONALLY
E ROUTINE

RETURNS INFORMATION ABOUT THE NEXT -KEYWORD (AND ITS ARGUMENT,
IF ONE IS PRESENT) ON THE COMMAND LINE.

THE USER DEFINES AN ARRAY OF -KEYWORDS AND AND DESCRIBES
THE TYPE OF ARGUMENT THAT MAY FOLLOW EACH KEYWORD. A
LIST OF DEFAULT KEYWORDS MAY ALSO BE DEFINED. KEYWOR
ARE ALSO PROVIDED FOR AND ABBREVIATIONS ARE HANDL

N OPTIONAL
D SYNONYMS
ED USING A

MINIMUM
CMD

CARGUME

NUMBE
L$A RE
NT3 EN

R OF
TURN
TRY

CHA
S TH
IN T

RACTERS
E FOLLOW
HE COMMA

TO MATCH SCHEME
ING INFORMATION
ND LINE:

FOR EACH -KEYWORD

1) INTEGER
2) TFXT OF

THAT IDENTIFIES THE -KEYWORD (KWINDX),
THE KEYWORD ARGUMENT (OPTBUF),

3) ARGUMENT TYPE (OPTION),
4) RESULTS OF NUMERIC CONVERSION (VALUE),
5) NUMBER OF CHARACTERS IN OPTBUF CKWINFOCD)

CMDLJA DOES NOT PFRFORM ANY ACTION
INFORMATION ABOUT THE COMMAND LINE.

OTHER THAN RETURNING

PAGE R E V . 2

TABLE OF CONTENTS

1

2

3

4

5

?.6 SYSTEM INFORMATION ROUTINES....-

..6
7
7

..7

10
10

... 10
11

12
12

13

15
26

39
.....42
....44

47

55
55
57

PAGE R E V . 2

1 I N T R O D U C T I O N

APPLIB I
EVER WIDE

S A NEW
NING GAP I

USER ORI
N PRIME

ENTE
SOFT

D LI
WARE

BRARY
. AT

WH
P
ICH IS
RESENT

INTEN
APP

DED TO
LICATI

FILL AN
ONS AND

SYSTEMS
BASED UPO
ROUTINES.

PROGRAMMER
N EITHER H

IN MOS

S MUST
IGH LEVE
T CASES

CRE
L LA
. T

ATE
NGUA
HE

USER INT
GE ROUTI
HIGH LE

ERFACE
NES OR
VEL C

S FOR
LOW

ONSTRU

THEIR
LEVEL

CTS AR

PROGRAMS
SYSTEM

E EITHER
INADEOUAT
THE LOW
ARE TYPIC

E OR PRESE
LEVEL ROU
ALLY DIFFI

NT A "RO
TINES, T
CULT TO

UGH"
HOUG
USE.

APP
H AL

A

EARANCE
LOWING A
SUBSEQU

TO THE
LMOST
ENT P

TERMI
ANYTHI
ROBLEM

NAL US
NG TO

ARIS

ER, AND
BE DONE,
ES WHEN

EVERYONE
THE USER.
SLOPPY FA

WRITES TH
AS A RES

CE TO THE

EIR OWN
ULT, PRI
USER PUB

INTE
ME
LIC.

RFAC
PRFS

ES:
ENTS

NO
AN

TWO PR
INCO

OGRAMS
NSISTE

LOOK
NT AN

ALIKE TO
D OFTEN

THE P
LIBRA

RIMAR
RY 0

GOA
SE

L OF
RVIC

A PPL I
E ROU

B IS TO PR
TINES WHI

OVIDE
CH FA

USERS
LLS BET

WITH A
WEEN T

N
HE

EASY
VERY

TO
HIGH

USE
AND

VERY
THAN
THE C

LOW L
CALL

ALLER

EVEL
A LO
DOES

ROUT
WER
N»T

INES.
LEVEL
CARE A

IN MANY C
ROUTINE, F
BOUT AND S

ASES,
ILLIN
OMETI

THE RO
G IN TH
MES REF

UTINES
E EXTR
ORMATS

DO LITT
A ARGUME

WHAT

LE MORE
NTS THAT
THE LOW

LEVEL
FAIRL
BECAU

ROU
Y COM
SE C

TINE
PLEX,
AREFU

RET
EIT

L C

URNS.
HER BE
ODING

IN OTHE
CAUSE THEI
IS REQUI

R CA
R FU
RED

SES, T
NCTIONA
TO PERF

HE APP
LITY
ORM A

LIB ROUT
DEMANDS
SEEMINGL

INES ARE
IT, OR

Y SIMPLE
OPERA
IT AV
CONSI

TION
OIDS
STENT

CORRE
DUPL
FACE

CTLY
ICAT
TO

. THE
ION 0
THE TE

SECONDARY
F EFFORT
RMINAL USE

BENE
AND

R.

FITS OF
AUTOMA

THIS
TICALL

LIBRARY
Y PROV

ARE THAT
IDES A

THE APPLIB ROUTINES ARE NOT INCLUDED IN FTNLIB FOR
FIRST, THEY DO NOT LOGICALLY BELONG THERE AS FTNLIB IS

TWO REASONS.
PRIMARILY FOR

THE LOW LEVEL SYSTEM ROUTINES
REQUIRES A LONG TIME TO LOAD
COMPLAINT. THEREFORE APPLIB,

SECOND, FTNLIB IS
THIS TIME IS ALREADY

AND ITS V-MODE VERSION

VERY LARGE AND
A SOURCE OF USER
VAPPLB, EXIST AS

INDEPENDENT LIBRARIES IN UFD=LIB ON THE SYSTEM.

2 GENERAL DESCRIPTION

ALL APPLIB ROUTINES ARE WRITTEN AS FORTRAN FUNCTIONS WHOSE VALUES ARE
EITHE
VALUE
ADDIT

R A
, 0
ION,

STATUS
R AN
THE C

IN
ALT

ALLE

DICATION
ERNATE V
R IS NEV

(.TRUE
ALUE OR
ER RETUR

OR .F
FORMAT OF
NED A "COD

ALSE.),
A RETUR
E" TYPE

AN
NED A

ARG

APPRO
RGUMEN
UMENT

PR1ATE
T. IN
WHICH

MUST
POSSI
INFOR

THE
BLE,
MATI

N BE
RECOV

ON OF

DEC
ERY
SUCC

ODED.
ARE PERF
ESS OR F

ALL ERR
ORMED IN
AILURE.

OR DETECT
THE ROUTI
ALTHOUGH

ION, R
NE, RET
THIS SE

EPORT
URNIN
EMS L

ING, A
G ONL
IMITIN

HO, IF
Y THE
G, AND

IN A
AS TH
BEEN

SE
E ER
TRI

NSE
ROR
ED.

IT
IS
I

IS,
REP

N MO

MOST US
ORTED AN
ST CASES

ERS DON'
D ALL PO
, THE EX

T WANT TO
SSIBLE RE
ACT REASON

KNOW TH
COVERY
FOR FA

E DET
PROC

ILURE

AILS A
EDURES
COMES

S LONG
HAVE

UNDER
THE HEADING OF "IRRELAVENT DIFFERENCE" AND IS IGNORED ANYWAY.

PAGE REV. 2

2.1 NAMING CONVENTIONS

AS MENTIONED ABOVE, APPLIB ROUTINES ARE DESIGNED TO BE SIMPLE TO
USE. IN ADDITION, THEY ARE ALSO INTENDED TO BE RELATIVELY
INDEPENDENT OF SYSTEM REVISIONS. TO FACILITATE THESE GOALS, ALL
APPLIB ROUTINES FOLLOW A CONSISTENT NAMING CONVENTION DESIGNED TO
AVOID THE POSSIBILITY OF CONFLICT BOTH WITH USER WRITTEN ROUTINES
AND SYSTEM ROUTINES. ALL APPLIB ROUTINES HAVE
MNEMONIC NAME AND THE SUFFIX "$A". THUS, FOR
ROUTINE TO OPEN A TEMPORARY FILE IS NAMED "TEMP$A

A FOUR LETTER
EXAMPLE, THE

ALSO, IN
MANY CASES ROUTINES HAVE OPTIONS WHICH ARE SPECIFIED
"PARAMETER" KEYS WHICH ALL BEGIN WITH THE PREFIX "A$".

BY NAMED

SUBROUTINES THAT ARE USED INTERNALLY BY APPLIB ROUTINES HAVE A
SUFFIX OF "$$A" AND SHOULD NOT BE USED UNDER ORDINARY
CIRCUMSTANCES. NO DOCUMENTATION IS PROVIDED FOR THESE ROUTINES.

2.2 SYSCOM>A$KEYS

ALL "PARAMETER1

SYSCOM>A$KEYS.
KEYS ARE DEFINED IN A SINSERT FILE NAMED
THE KEY NAMES, FOLLOWING THE "AS" PREFIX ARE

THREE OR FOUR LETTER MNEMONICS SPECIFYING THE ALLOWABLE OPTIONS
FOR THE VARIOUS ROUTINES. THE KEYS ARE ORGANIZED ACCORDING TO
THE DESCRIPTIONS IN THIS DOCUMENT. IN ADDITION, THIS FILE
SUPPLIES ALL THE APPROPRIATE FUNCTION TYPE DECLARATIONS FOR THE
APPLIB ROUTINES. A COMPLETE LISTING OF SYSCOM>A$KEYS IS INCLUDED
IN SECTION 5 AND THE DETAILED DESCRIPTIONS OF THE KEYS ARE LEFT
FOR THE DESCRIPTIONS OF THE APPLICABLE ROUTINES

2.3 FILE SYSTEM ROUTINES

THE FILE SYSTEM ROUTINES IN APPLIB GIVE THE USER A SIMPLE AND
CONSISTENT WAY TO SPECIFY THE MOST COMMON FILE SYSTEM OPERATIONS.
ACCORDINGLY, APPLIB DOES NOT PROVIDE THE USER WITH THE FULL
CAPABILITIES OF THE FILE SYSTEM SINCE FOR MORE COMPLICATED
OPERATIONS, THE FILE SYSTEM ROUTINES THEMSELVES ARE THE BEST
ROUTINES TO CALL. APPLIB SUPPORTS BOTH SEQUENTIAL ACCESS METHOD
(SAM) AND DIRECT ACCESS METHOD (DAM) FILES. THERE IS NO SUPPORT
FOR SEGMENT DIRECTORY TYPE FILES AS THE MIDAS SUBSYSTEM PROVIDES
THE HIGHER LEVEL FUNCTIONS WITH THESE FILES.

THE OPERATIONS PROVIDED IN APPLIB ARE:

PAGE REV

1. OPEN - NOTE, THERE ARE SEVERAL POSSIBILITIES HERE
2. CLOSE
3. REWIND
A. GO TO END-OF-FILE
5. TRUNCATE
6. DELETE
7. CHECK FOR FILE EXISTENCE
8. CHECK FOR UNIT OPEN
9. READ CURRENT POSITION

10. SET POSITION

ALL ROUTINES EXCEPT OPEN, DELETE AND EXISTENCE
FILE UNIT AND NOT THE FILE NAME. ALSO, EACH

USE ONLY THE DOS
ROUTINE CARRIES THE

NAME OF ITS FUNCTION, AS ABOVE, WITH ARGUMENTS CONSISTING OF ONLY
THE RELAVENT INFORMATION, USUALLY JUST THE UNIT NUMBER. NOTE THAT
ALL FILE NAMES, EXCEPT SCRATCH FILES, MAY BE TREE NAMES.

THE ONLY ROUTINES WHICH ARE AT ALL COMPLICATED ARE THE VARIOUS (5)
OPEN ROUTINES DUE MOSTLY TO THE MULTITUDE OF WAYS IN WHICH PROGRAMS
CAN OBTAIN THE
POSSIBLE ACTIONS
ERROR RECOVERY.

NAME OF THE FILE THEY WISH TO OPEN AND THE VARIOUS
THEY MAY WANT TO TAKE BY WAY OF VERIFICATION OR

RATHER THAN PACK ALL POSSIBILITIES INTO A SINGLE
CALLING SEQUENCE, THUS MAKING IT ALWAYS DIFFICULT TO USE AlTD TO"
REMEMBER, FIVE DIFFERENT ROUTINES EXIST TO PERFORM THE VARYING
LEVELS OF COMPLEXITY. IN THIS WAY, THE SIMPLE OPERATIONS CARE
REPRESENTED BY
OPERATIONS NEED

SIMPLE CALLING SEQUENCES
TO SPECIFY COMPLEX ARGUMENT

AND ONLY
LISTS.

THE COMPLEX

THF VARIOUS OPEN OPERATIONS ARE, BRIEFLY:

1. TEMPSA - OPEN A SCRATCH FILE WITH UNIQUE NAME
2. OPEN$A - OPEN SUPPLIED NAME
3. OPNPSA - READ NAME AND OPEN
A. OPNVSA - OPEN SUPPLIED NAME WITH VERIFICATION AND DELAY
5. OPVP$A - READ NAME AND OPEN WITH VERIFICATION AND DELAY

ALL ROUTINES ALLOW SELECTION OF THE FILE TYPE (SAM OR DAM) AND ALL
BUT TEMPIA ALLOW SPECIFICATION OF THE OPEN MODE (READ, WRITE, OR
READ/WRITE). SCRATCH FILES ARE ALWAYS OPENED FOR READ/WRITE.

VERIFICATION CONSISTS OF THE FOLLOWING OPTIONS:

1. VERIFY THAT THE FILE IS NEW; THAT IS, VERIFY THAT IT IS O.K.
TO MODIFY A FILE WHICH ALREADY EXISTS.

2. SAME AS 1. ABOVE BUT IF THE FILE ALREADY EXISTS AND THE USER
SAYS IT IS O.K. TO MODIFY IT, ASK WHETHER THE OLD FILE IS TO BE
OVERWRITTEN OR APPENDED TO.

3. VERIFY THAT THE FILE IS OLD; THAT IS, DO NOT ALLOW CREATION OF
A NEW FILE. NOTE THAT IF THE OPEN MODE IS READ, THIS IS THE
ONLY POSSIBLE VERIFICATION OPTION.

DELAY CONSISTS OF THE FOLLOWING OPTIONS:

PAGE 9 REV. 2

1, IF AND ONLY IF THE FILE IS "IN USE"* WAIT A SUPPLIED NUMBER OF
SECONDS (ELAPSED TIME) AND TRY AGAIN.

2. THE ABILITY TO RETRY 1. ABOVE A SPECIFIED NUMBER OF TIMES.

2.4 STRING MANIPULATION ROUTINES

THE STRING MANIPULATION ROUTINES ARE DESIGNED TO FACILITATE THE
HANDLING OF CHARACTER STRINGS. UNLESS NOTED OTHERWISE IT WILL BE
ASSUMED THAT ALL OF THESE ROUTINES OPERATE ON PACKED (2 CHARACTERS
PER WORD) STRINGS AND THAT THE DATA TYPE OF THE STRING DOES NOT
MATTER. MOST OF THE ROUTINES IN THIS SECTION CHECK THE VALIDITY OF
STRING SUBSCRIPTS (CHARACTER POSITIONS) AND IF AN ERROR IS DETECTED
WILL CAUSE A MESSAGE TO BE DISPLAYED.

THESE ROUTINES ARE:

FILL$A - FILL A STRING WITH A CHARACTER (E.G. FILL A NAME
BUFFER WITH SPACES)

NLENJA - DETERMINE THE OPERATIONAL LENGTH OF A STRING (NAME),
NOT INCLUDING TRAILING BLANKS.

MCHRSA - MOVE A CHARACTER FROM ONE PACKED STRING TO ANOTHER.

GCHRSA ~ GET A CHARACTER FROM A PACKED STRING.

TREESA- - TEST FOR TREE NAME

TYPEtA - DETERMINE STRING TYPE

MSTRSA - MOVE ONE STRING TO ANOTHER

fis.UB-SA - MOVE ONE SUBSTRING TO ANOTHER

CSTRSA - COMPARE TWO STRINGS FOR EQUALITY

CSUBSA - COMPARE TWO SUBSTRINGS FOR EQUALITY

LSTRSA - LOCATE ONE STRING WITHIN ANOTHER

LSUB$A - LOCATE ONE SUBSTRING WITHIN ANOTHER

JSTRSA - JUSTIFY A STRING

2.5 USER QUERY ROUTINES

YSNOSA - ASK QUESTION AND OBTAIN A YES OR NO ANSWER

RNAMSA - PROMPT AND READ A NAME

PAGE 10 REV. 2

•RNUMS.A' PROMPT AND READ A NUMBER (DECIMAL, OCTAL* OR
HEXADECIMAL) INTO AN INTEGER** VARIABLE.

2.6 SYSTEM INFORMATION ROUTINES

TIMESA - TIME OF DAY

CTIflSA - CPU TIME SINCE LOGIN

DTIMSA rr DISK TIME SINCE LOGIN

DATESA - TODAY'S DATE, AMERICAN STYLE

EDATSA - TODAY'S DATE, EUROPEAN (MILITARY) STYLE

DOFY$A - TODAY'S DATE AS DAY OF YEAR ("JULIAN" DATE)

2.7 CONVERSION ROUTINES

ENCDSA - ENCODE FUNCTION THAT ADJUSTS THE
NUMBER PRINTABLE IF POSSIBLE.

FORMAT'' TO MAKE THE
IF NOT, THE FIELD IS

FILLED WITH ASTERISKS.

CNVA*A - CONVERT ASCII NUMBER TO BINARY.

CNVBSA - CONVERT BINARY TO ASCII NUMBER.

2.8 MATHEMATICAL ROUTINES

RNDISA - INITIALIZE RANDOM NUMBER GENERATOR "SEED".

RANDJA - GENERATE RANDOM NUMBER AND UPDATE "SEED". THIS
GENERATOR IS BASED UPON A 32-BIT WORD SIZE AND USES THE
LINEAR CONGRUENTIAL METHOD.

2.9 PARSING ROUTINES

CMDLSA - PARSE PRIMOS TYPE COMMAND LINE.

PAGE 11 REV. 2

3 LIBRARY IMPLEMENTATION AND POLICIES

A STRONG EFFORT IS BEING MADE TO KEEP APPLIB BOTH CONSISTENT IN ITS
USAGE AND EASY TO BUILD, EXPAND, AND MAINTAIN. TO THIS END, SEVERAL
GUIDING PRINCIPLES HAVE BEEN FOLLOWED IN ITS IMPLEMENTATION AND
OF RULES ESTABLISHED TO CONTROL ITS FUTURE GROWTH.

A SET

3.1 SOURCE LANGUAGE

ALL ROUTINES IN APPLIB ARE WRITTEN IN FORTRAN TO FACILITATE THEIR
INCLUSION IN BOTH APPLIB AND VAPPLB. IN GENERAL, ANY LANGUAGE
WHICH CANNOT BE EITHER R-MODE OR V-MODE AS A COMPILER OPTION SHOULD
BE AVOIDED AS THE PROLIFERATION OF MULTIPLE SOURCES OF THE SAME
ROUTINE IS GUARENTEED, SOONER OR LATER, TO CAUSE THE TWO LIBRARIES
TO FALL OUT OF SYNCHRONY. AS A MAJOR PREMISE OF APPLIB IS
CONSISTENCY, INCOMPATIBLITIES
LIBRARIES ARE UNACCEPTIBLE.

BETWEEN THE R-MODE AND V-MODE

THE ROUTINES HAVE BEEN CODED IN SUCH A WAY AS TO MAKE THEM EASILY
CALLABLE FROM MOST OTHER LANGUAGES, INCLUDING PLP AND 1976 ANSI
FORTRAN, BOTH OF WHICH CAN AUTOMATICALLY GENERATE STRING LENGTH
ARGUMENTS FOLLOWING STRING ARGUMENTS. AS A RESULT, IN THE ARGUMENT
PAIR "NAME,NAMLEN", THE NAME IS OFTEN UPDATED BY AN APPLIB ROUTINE,
BUT THE NAMLEN ARGUMENT IS NEVER TOUCHED. THE FUNCTION NLENSA CAN
BE USED TO DETERMINE THE OPERATIONAL LENGTH OF A RETURNED NAME.

ALL APPLIB ROUTINES WHICH EITHER ACCEPT KEYS AS ARGUMENTS OR CALL
OTHER APPLIB ROUTINES WHICH DO, USE THE SYSCOM>A$KEYS FILE TO
DEFINE THOSE KEYS. ALSO, THESE ROUTINES DO NOT TAKE ADVANTAGE OF
ANY PARTICULAR NUMERICAL VALUES THESE KEYS MAY HAVE IN CASE IT
BECOMES
WITH N
EXAMPLE

NECESSA
UMER1CAL
, THERE

RY EITHE
VALUES

ARE NO C

R TO
WHI

OMPU

CHANG
CH DO
TED GO

E THESE VALUES OR TO ADD NEW KEYS
NOT FIT THE PREVIOUS PATTERN. FOR
TO»S ON KEYS AND NO RANGE CHECKS

FOR VALIDITY OF A KEY. IN THIS WAY, IF A NEW SYSCOM>A$KEYS FILE IS
CREATED, BOTH THE USER PROGRAMS USING THEM AND THE ROUTINES THEY
CALL WILL ALWAYS AGREE AS TO WHAT KEY MEANS WHAT. THE SAME IS TRUE
OF THE DECLARED TYPES OF THE APPLIB FUNCTIONS.

3.2 LIBRARY BUILDING

ALL ROUTINES ARE COMPILED INTO A SINGLE BINARY FILE WHICH IS THEN
CONVERTED INTO THE APPROPRIATE LIBRARY FILE WITH THE EDB UTILITY.
AT PRESENT, THE ONLY DIFFERENCE BETWEEN THE R-MODE AND V-MODE BUILD
PROCEDURES IS THE FTN COMPILE OPTION USED. FOR APPLIB, ALL
ROUTINES ARE COMPILED FOR 6AR MODE LOADING AND FOR VAPPLB, ALL
ROUTINES ARE COMPILED FOR 64V MODE LOADING (SEG). IN ADDITION, ALL
ROUTINES INCLUDED IN VAPPLB ARE PURE PROCEDURE AND MAY BE LOADED
INTO THE SHARED PORTION OF A SHARED PROCEDURE

SINCE SEVERAL OF THE APPLIB ROUTINES CALL OTHER APPLIB ROUTINES,
THE LOAD ORDER IS IMPORTANT. THIS ORDER IS SPECIFIED IN THE
COMMAND FILES "C APPL" AND "C VAPP" LOCATED IN UFD = APPLIB>SOURCE.

PAGE 1? REV. 2

3.3 LIBRARY SUBMISSIONS

APPLIB IS
WELCOME.

BY NO MEANS
HOWEVER, TO

COMPLETE OR STATIC AND SUBMISSIONS ARE
GUARANTEE THE GOALS OF APPLIB AS OUTLINED

ABOVE, STRICT CONTROL WILL BE MAINTAINED OVER THE LIBRARY AND ALL
SUBMISSIONS MUST CONFORM TO THE RULES SET OUT BELOW. THESE RULES,
THOUGH STRICT, ARE NOT MEANT TO DISCOURAGE SUBMISSIONS, BUT TO
PRESERVE THE INTEGRITY OF THE LIBRARY
EXCESIVE AMOUNT OF WORK ON THE PART OF THE

WHILE NOT REQUIRING AN
LIBRARY ADMINISTRATOR.

IF SUBMISSIONS ARE MADE WHICH DO NOT CONFORM TO THE RULES, THEY
WILL BE PLACED IN A "PENDING" FILE OR AN "IDEA" FILE, DEPENDING
UPON THEIR RELATIVE STATES OF COMPLETION. NO GUARANTEE IS MADE
THAT ANY SUCH SUBMISSIONS WILL BE INCORPORATED INTO THE LIBRARY-

THE SPIRIT OF APPLIB SHOULD BE KEPT IN MIND WHEN SUBMITTING A
ROUTINE. FOR EXAMPLE, A ROUTINE TO PERFORM A MATHEMATICAL FUNCTION
MAY BE VERY USEFUL AND DESIREABLE, BUT PROBABLY BELONGS IN MATHLB,
NOT APPLIB. IN A SIMILAR WAY, A ROUTINE WHICH DOES TABLE BUILDING,
LOOK-UP, OR SORTING PROBABLY BELONGS IN EITHER THE MSORTS OR SRTLIB
LIBRARY.

THE LIST OF APPLIB "GROUND RULES" ARE:

1. THE ROUTINE MUST BE IN FORTRAN SUITABLE FOR BQJH APPLIB AND
VAPPLB.

2. THE ROUTINE SOULD NOT HAVE "CODE" AS AN ARGUMENT - THE ROUTINE
SHOULD HANDLE ALL ABNORMAL SITUATIONS.

3. IF REASONABLE, THE ROUTINE SHOULD BE A FUNCTION WHERE THE VALUE
OF THE FUNCTION IS AN ALTERNATE FORM OF THE RETURNED ARGUMENT(S)
OR A STATUS INDICATION (SEE #2).

4. THE ROUTINES SHOULD CONFORM TO THE FOLLOWING CONVENTIONS:

A. ALL ROUTINE NAMES SHOULD END WITH "$A".

B. ALL ROUTINES WHICH ACCEPT A KEY OR CALL OTHER APPLIB ROUTINES
WHICH DO, SHOULD USE SYSCOM>ASKEYS. ANY NEW KEYS WILL BE
ADDED TO SYSCOM>A$KEYS BY THE LIBRARY ADMINISTRATOR AND
SHOULD BEGIN WITH THE PREFIX "A$". ALSO, NO USE SHOULD BE
MADE OF ANY NUMERICAL RELATION BETWEEN KEYS.

C. ALL FILE SYSTEM CALLS SHOULD BE TO "$$"
RATHFR THAN LOC(CODE) AS AN ARGUMENT.

ROUTINES WITH CODE

D. RDTK$$ SHOULD BE USED INSTEAD OF CMREAD. IF THE 80 CHARACTER
LIMIT FOR RDTKSS IS INSUFFICIENT, USE ISAA12.

E. IF REASONABLE, DO NOT USE FORTRAN READ'S AND WRITE'S.

F. THE USE OF "2-WAY" ARGUMENTS SHOULD BE AVOIDED IF POSSIBLE.

PAGE 13 REV. 2

ALL ROUTINES SHOULD BE THOROUGHLY TESTED -

6. ALL SUBMISSIONS MUST BE ACCOMPANIED BY A LISTING WITH A STANDARD
PRIME HEADER. ALSO, THE LISTING SHOULD CONTAIN A DESCRIPTION OF
THE ARGUMENTS AS WELL AS
ON THEIR USE OR ON THEIR

ANY LIMITATIONS
LOADING.

OR RESTRICTIONS EITHER

7. ALL SUBMISSIONS MUST BE ACCOMPANIED BY A DOCUMENT DESCRIBING
THEIR USE, ALL ARGUMENTS, AND ANY RESTRICTIONS OR LIMITATIONS ON
THEIR USE. THIS DOCUMENT WILL BE INCLUDED IN THE LIBRARY
DESCRIPTION.

8. ALL SUBMITTED ROUTINES ARE SUBJECT TO MODIFICATION FOR THE
PURPOSE OF CONSISTENCY OR GENERALITY.

ALL SUBMISSIONS ARE SUBJECT TO REVIEW AND FINAL APPROVAL BY THE
LIBRARY ADMINISTRATOR BFFORE THEY ARE INCORPORATED INTO APPLIB.

PAGE 14 REV

4 THE ROUTINES

BELOW ARE THE DETAILED DESCRIPTIONS OF EACH ROUTINE IN APPLIB, GROUPED
BY FUNCTION.

4.1 FILE SYSTEM

TEMPSA

TEMPSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE

LOG= TEMPSACTYPKEY,NAME,NAMLEN,UNIT)
CALL TEHPSA(TYPKEY,NAME,NAMLEN,UNIT)

WHERE TYPKEY = A$SAMF, SAM FILE (-NE. A$DAMF)
ASDAMF, DAW FILE

NAME = RETURNED NAME (6 CHARACTERS)
NAMLEN = LENGTH OF NAME BUFFER IN CHARACTERS C.GE. 6)
UNIT = DOS FILE UNIT

ALL ARGUMENTS ARE INTEGERS EXCEPT NAME WHICH DOESN'T MATTER.

THIS ROUTINE OPENS A UNIQUE TEMPORARY FILE IN THE CURRENT UFD FOR
WRITING. THIS FILE WILL BE NAMED TSXXXX WHERE XX XX IS

INCLUSIVE.
READING AND
A 4 DIGIT DECIMAL NUMBER BETWEEN OOOO AND 9999
ACTUAL NAME OPENED WILL BE RETURNED IN THE NAME BUFFER.
OPERATION IS SUCCESSFUL, THE FUNCTION VALUE IS .TRUE. AND

IF
IF

THE
THE
THE

OPERATION IS UNSUCCESSFUL, THE FUNCTION VALUE IS .FALSE

PAGE 15 REV

QPENSA

OPEHSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= OPEN$A(OPNKEY+TYPKEY,NAME,NAMLEN,UNIT)
CALL OPEN$A(OPNKEY+TYPKEY,NAME,NAMLEN,UNIT)

WHERE OPNKEY = ASREAD, OPEN FOR READING (.NE. A$WRIT OR ASRDWR)
ASWRIT, OPEN FOR WRITING
ASRDWR, OPEN FOR READING AND WRITING

TYPICEY = ASSAMF, SAM FILE (.NE. ASDAMF)
ASDAMF, DAW FILE

NAME = FILE NAME (MAY BE A TREE NAME)
NAMLEN = LENGTH OF NAME IN CHARACTERS
UNIT = DOS FILE UNIT

ALL ARGUMENTS ARE INTEGERS EXCEPT NAME WHICH DOESN«T MATTER.

THIS ROUTINE OPENS A FILE OF THE GIVEN NAME ON UNIT IF THE
OPERATION IS SUCCESSFUL, THE FUNCTION VALUE IS .TRUE-
OPERATION IS UNSUCCESSFUL, THE FUNCTION VALUE IS .FALSE.

AND IF THE

OPNPSA

OPNPSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= OPNPSA(MSG,MS6LEN,0PNKEY+TYPKEY,NAME,NAMLEN,UNIT)
CALL OPNpSA(MSG,MSGLEN,OPNKEY+TYPKEY,NAME,NAMLEN,UNlT)

WHERE MSG = PROMPT FOR NAME MESSAGE
MSGLEN = LENGTH OF MSG IN
OPNKEY = ASREAD, OPEN FOR

ASWRIT, OPEN FOR

CHARACTERS
READING (.NE.
WRITING

ASWRIT OR ASRDWR)

ASRDWR, OPEN FOR READING AND WRITING
TYPKEY = A$SAMF, SAM FILE (.NE. ASDAMF)

ASDAMF, DAM FILE :

NAME = FILE NAME (MAY BE
NAMLEN = LENGTH OF NAME IN
UNIT = DOS FILE UNIT

A TREE NAME)
CHARACTERS

ALL ARGUMENTS
MATTER.

ARE INTEGER*2 EXCEPT NAME AND MSG WHICH DON'T

THIS ROUTINE GETS A NAME FROM THE USER AND OPENS IT ON UNIT. IF
THF OPERATION IS SUCCESSFUL, THE FUNCTION VALUE IS .TRUE. AND IF
THE OPERATION IS UNSUCCESSFUL OR NO NAME IS SUPPLIED, THE
VALUE IS .FALSE..

FUNCTION

PAGE 16 REV. 2

OPNVSA

OPNVSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= OPNVSA(0PNKEY+TYPKEY,NAME,NAMLEN,UNIT,VERKEY,WTIME,RETRYS)
CALL OPNVSA(OPNKEY+TYPKEY,NAME,NAMLEN,UNIT,VERKEY,WTIME,RETRYS)

WHERE OPNKEY = ASREAD, OPEN FOR READING C.NE. ASWRIT OR A$RDWR)
ASWRIT, OPEN FOR WRITING
ASRDWR, OPEN FOR READING AND WRITING

TYPICEY = ASSAMF, SAM FILE (.NE. ASDAMF)
ASDAMF, DAM FILE

NAME = FILE NAME (MAY BE A TREE NAME)
NAMLEN = LENGTH OF NAME IN CHARACTERS
UNIT = DOS FILE UNIT
VERKFY = ASNVER, NO VERIFICATION

ASVNEW, VERIFY NEW (OK TO MODIFY OLD)
ASOVAP, ASVNEW + OVERWRITE OR APPEND IF WRITING
ASVOLD, VERIFY OLD (ALREADY EXISTS)

WTIMF = NUMBER OF SECONDS TO WAIT IF FILE IN USE
RETRYS = NUMBER OF TIMES TO RETRY IF FILE IN USE

ALL ARGUMENTS ARE INTEGFR*2 EXCEPT NAME WHICH DOESN'T MATTER.

THIS ROUTINE OPENS A FILE OF THE GIVEN NAME ON UNIT. NOTE THAT THE
FUNCTIONS OF VERIFICATION AND DELAY AS DESCRIBED BELOW ARE
INDEPENDENT OF EACH OTHER.

IF WTIME AND RETRYS ARE SPECIFIED NON-ZERO AND T~HE FILE TO IT
OPENED IS~IN USE, THE OPEN WILL BE RETRIED THE SPECIFIED NUMBER OF
TIMES,, WITH WTIME SECONDS (ELAPSED TIME) BETWEEN EACH ATTEMPT. IF
THE NUMBER OF RETRIES EXPIRES, OR IF EITHER WTIME OR RETRYS IS
INITIALLY 0 AND THE FILE IS IN USE, THE FUNCTION RETURNS .FALSE..

IF VERIFICATION IS REQUESTED (VERKEY .NE. ASNVER), THE FOLLOWING
ACTIONS WILL BE TAKEN:

ASVNEW IF THE FILE ALREADY EXISTS AND OPNKEY IS EITHER ASWRIT OR
ASRDWR, THE USER WILL BE ASKED IF IT IS OK TO MODIFY THE
OLD FILE. IF THE ANSWER IS "NO", THE FUNCTION RETURNS
.FALSE.. IF THE ANSWER IS "YES", THE FILE IS OPENED-

ASOVAP THIS IS THE SAME AS ASVNEW EXCEPT THAT IF AN OLD FILE IS
TO BE MODIFIED, THE USER IS ALSO ASKED IF THE FILE SHOULD
BE OVERWRITTEN OR APPENDED TO. IF THE ANSWER IS
"APPEND", THE FILE WILL BE POSITIONED TO END-QF-FILE.

ASVOLD THIS IS THE DEFAULT CASE IF OPNKEY=ASREAD. IF NOT, AND
IF THE NAMED FILE DOES NOT ALREADY EXIST, A NEW FILE WILL
NOT BE CREATED AND THE FUNCTION RETURNS .FALSE..

IF ANY ERRORS NOT COVERED ABOVE OCCUR WHILE OPENING THE FILE OR
POSITIONING IT (ASOVAP), THE FUNCTION RETURNS .FALSE.. IF THE OPEN
IS ULTIMATELY SUCCESSFUL, THE FUNCTION RETURNS .TRUE..

PAGE 17 REV. 2

OPVPSA

OPVPSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE

LOG= OPVPSA(MSG,MSGLEN,OPNKEY+TYPKEY,NAME,NAMLEN,UNlT,
VERKEY,WTIME,RETRYS)

CALL OPVPSA(MSG,MSGLEN,OPNKEY+TYPKEY,NAME,NAMLEN,UNIT,
VERKEY,WTIME,RETRYS)

WHERE MSG = PROMPT FOR NAME MESSAGE
MSGLEN
OPNKEY

LENGTH
ASREAD
A$WRIT

OF MSG IN
, OPEN FOR
, OPEN FOR

CHARACTERS
READING (".NE.
WRITING

ASWRIT OR ASRDWR)

ASRDWR, OPEN FOR READING AND WRITING
TYPKEY = ASSAMF, SAM FILE (.NE. ASDAMF)

ASDAMF, DAM FILE
NAME = FILE NAME (MAY BE A TREE NAME)
NAMLEN = LENGTH OF NAME IN CHARACTERS
UNIT = DOS FILE UNIT
VERKEY = ASNVER, NO VERIFICATION

ASVNEW, VERIFY \^\i (OK TO MODIFY OLD)
ASOVAP, ASVNEW + OVERWRITE OR APPEND IF WRITING
ASVOLD, VERIFY OLD (ALREADY EXISTS)

WTIME = NUMBER OF SECONDS TO WAIT IF FILE IN USE
RETRYS = NUMBER OF TIMES TO RETRY IF FILE IN USE

ALL ARGUMENTS
MATTER.

ARE INTEGFR*2 EXCEPT NAME AND MSG WHICH DON'T

THIS ROUTINE GETS A NAME FROM THE USER AND OPENS IT ON UNIT. NOTE
THAT THE FUNCTIONS OF VERIFICATION AND DELAY AS DESCRIBED BELOW ARE
INDEPENDENT OF EACH OTHER.

IF WTIME AND RFTRY5 ARE SPECIFIED NON-ZERO AND THE FILE TO BE
OPENED IS IN USE, THE OPEN WILL BE RETRIED THE SPECIFIED NUMBER OF
TIMES, WITH WTIME SECONDS (ELAPSED TIME) BETWEEN EACH ATTEMPT. IF
THE NUWBER OF RETRIES EXPIRES, OR IF EITHER WTIME OR RETRYS IS
INITIALLY 0 AND THE FILE IS IN USE, THE FUNCTION RETURNS .FALSE..

IF VERIFICATION IS REQUESTED (VERKEY .NE. ASNVER) THE FOLLOWING
ACTIONS WILL BE TAKEN:

ASVNEW IF THE FILE ALREADY EXISTS AND OPNKEY IS EITHER ASWRIT OR
ASRDWR, THE USER WILL BE ASKED IF IT IS OK TO MODIFY THE
OLD FILE. IF THE ANSWER IS "NO", A NEW FILE NAME WILL BE
REQUESTED. IF THE ANSWER IS "YES", THE FILE IS OPENED.

ASOVAP THIS IS THE SAME AS
TO BE MODIFIED, THE

ASVNEW EXCEPT THAT IF AN OLD FILE IS
USER IS ALSO ASKED IF THE FILE SHOULD

BF OVERWRITTEN OR APPENDED TO. IF THE ANSWER IS
"APPEND", THE FILE WILL BF POSITIONED TO END-OF-FILE.

PAGE 18 REV. 2

ASVOLD THIS IS THE DEFAULT CASE IF OPNKEY=A$READ, IF NOT, AND
IF THE NA^ED FILE DOES NOT ALREADY EXIST, A NEW FILE WILL
NOT BE CREATED AND A NEW NAME WILL BE REQUESTED.

IF ANY ERRORS NOT COVERED ABOVE OCCUR WHILE OPENING THE F T L E OR"
POSITIONING IT (ASOVAP), OR A NAME IS NOT SUPPLIED WHEN REQUESTED,
THE FUNCTION RETURNS .FALSE.. IF THE OPEN IS ULTIMATELY
SUCCESSFUL, THE FUNCTION RETURNS .TRUE..

CLOSSA

CLOSSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= CLOS$A(UNIT)
CALL CLOS$A(UNIT)

WHERE UNIT = DOS FILE UNIT

UNIT IS INTEGER*?.

THIS ROUTINE CLOSES THE FILE OPEN ON FILE UNIT UNIT. IF THE
OPERATION IS SUCCESSFUL, THE FUNCTION IS .TRUE.
UNSUCCESSFUL, THE FUNCTION IS .FALSE..

AND IF

RWNDSA

RWNDSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= RWNDSA(UNIT)
CALL RWNDSA(UNIT)

WHERE UNIT = DOS FILE UNIT

UNIT IS INTEGER*2.

THIS ROUTINE REWINDS THF FILE OPEN ON FILE UNIT UNIT. IF THE
OPERATION IS SUCCESSFUL, THE FUNCTION IS .TRUE. AND IF
UNSUCCESSFUL, THE FUNCTION IS .FALSE..

PAGE 19 REV. 2

GENDSA

GEND$A IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= GENDSACUNIT)
CALL GENOSACUNIT)

WHERE UNIT = DOS FILE UNIT

UNIT IS INTEGER*?.

THIS ROUTINE POSITIONS TO END-OF-FILE THE FILE OPEN ON FILE UNIT
UNIT. IF THE OPERATION IS SUCCESSFUL, THE FUNCTION IS .TRUE. AND
IF UNSUCCESSFUL, THE FUNCTION IS .FALSE..

TRNC$A

TRNC$A IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= TRNCSA(UNIT)
CALL TRNCSA(UNIT)

WHERE UNIT = DOS FILE UNIT

UNIT IS INTEGER*2.

THIS ROUTINE TRUNCATES THE FILE OPEN ON FILE UNIT UNIT. IF THE
OPERATION IS SUCCESSFUL, THE FUNCTION IS -TRUE. AND
UNSUCCESSFUL, THE FUNCTION IS .FALSE..

IF

DELESA

DELESA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= D£LE$A(NAME,NAMLEN) _ ^ _ ^ _
CALL DELE$A(NAME,NAMLEN)

WHERE NAME = FILE NAME (MAY BE A TREE NAME)
NAMLEN = LENGTH OF NAME IN CHARACTERS

NAMLEN IS INTEGER*?, BUT THE TYPE OF NAME DOESN'T MATTER.

THIS ROUTINE WILL DELETE THE FILE IN NAME. IF THE OPERATION IS
SUCCESSFUL, THE FUNCTION IS .TRUE. AND IF UNSUCCESSFUL, THE
FUNCTION IS .FALSE..

PAGE 20 REV. 2

EXSI$A

EXSTSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= EXST$A(NAME#NAI«LEN)

WHERE NAME = FILE NAWE (WAY BE A TREE NAME)
NAMLEN = LENGTH OF NAME IN CHARACTERS

NA*1LEN IS INTEGER*2, BUT THE TYPE OF NAME DOESN'T MATTER.

THIS ROUTINE WILL RETURN .TRUE. IF THE FILE EXISTS AND .FALSE. IF
THE FILE DOES NOT EXIST OR AN ERROR WAS ENCOUNTERED.

UNITSA

UNITSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= UNITSA(UNIT)

WHERE UNIT = DOS FILE UNIT

UNIT IS INTEGER*2.

THIS ROUTINE WILL RETURN .TRUE. IF THE UNIT IS O F T N ANT) .FALSE.
IF THE UNIT IS NOT OPEN.

RPOS$A

RPOS$A IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE

LOG= RPOS$A(UNIT,POS)
CALL RPOS$A(UNIT,POS)

WHERE UNIT = DOS FILE UNIT
POS = RETURNED ABSOLUTE POSITION

UNIT IS INTEGER*2 AND POS IS INTEGER*4.

THIS ROUTINE WILL RETURN THE CURRENT ABSOLUTE POSITION OF THE FILE
OPEN ON UNIT UNIT. IF THE OPERATION IS SUCCESSFUL, THE FUNCTION IS
.TRUE. AND IF UNSUCCESSFUL, THE FUNCTION IS .FALSE..

PAGE 21 REV,

POSNSA

POSNSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= POSN$A(POSKEY,UNIT,POS)
CALL POSN$A(POSKEY,UNIT,POS)

WHERE POSKEY

UNIT

ASABS, ABSOLUTE POSITION (.NE.
ASREL, RELATIVE POSITION
DOS FILE UNIT

ASREL)

POS = POSITION (RELATIVE OR ABSOLUTE)

POSKEY AND UNIT ARE INTEGER*2 AND POS IS INTEGER*^.

THIS ROUTINE WILL POSITION THE FILE OPEN ON FILE UNIT UNIT TO THE
SUPPLIED POSITION. IF THE OPERATION IS SUCCESSFUL, THE FUNCTION IS
.TRUE. AND IF UNSUCCESSFUL, THE FUNCTION IS .FALSE..

TSCNSA

TSCNjA I S A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE

LOG= TSCN$A(KEY,UNITS ,ENTRY,MAXSIZ ,ENTSIZ ,MAXLEV,LEV,CODE)
CALL TSCN$A(KEY,UNITS ,ENTRY,MAXSIZ ,£NTSIZ ,MAXLEV,LEV ,CODE)

WHERE KEY A$TREE, SCAN FULL TREE
AjSNUFD, DO NOT SCAN SUBUFDS
ASNSEG, DO NOT SCAN SEGMENT DIRECTORIES
A$CUFD, SCAN CURRENT UFD ONLY
ASDLAY, PAUSE WHEN POPPING UP TO DIRECTORY
ASBACK, BACK UP ONE LEVEL (FOR ERROR HANDLING)

UNITS = ARRAY OF UNIT NUMBERS MAXLEV LONG
ENTRY = ARRAY MAXSIZ * MAXLEV LONG
MAXSIZ = SIZE OF EACH ENTRY IN ENTRY ARRAY
ENTSIZ = SET TO SIZE OF CURRENT ENTRY
MAXLEV = MAXIMUM NUMBER OF LEVELS TO SCAN
LEV = CURRFNT LEVEL
CODE = RETURNED FILE SYSTEM CODE

ALL PARAMETERS ARE INTEGER*2.

TSCNSA SCANS THF FILE SYSTEM TREE STRUCTURE (STARTING WITH THE HOME
UFD) USING RDEN$$ AND SGDR$I TO READ UFD
ENTRIES INTO THF ENTRY ARRAY. EACH CALL TO
FILE ON THE CURRENT LEVFL OR THE FIRST FILE

AND SEGMENT DIRECTORY
TSCN$A RETURNS THE NEXT
ON THE NEXT LOWER LEVEL

OF THE STRUCTURE. THE VARIABLE LEV IS USED TO KEEP TRACK OF THE
CURRENT LEVFL. FOR EXAMPLE, AFTER THE FIRST CALL TO TSCNSA (WITH
LEV=0), LEV WILL BE RETURNED AS 1, AND ENTRY(1,1) WILL CONTAIN THE
UFD ENTRY DESCRIBING THE FIRST FILE IN THE HOME UFD.
IS A SUBUFD, FOLLOWING THE NEXT CALL TO TSCNSA, LEV
ENTRY(1,2) WILL CONTAIN THF ENTRY FOR THE FIRST FILE

IF THIS FILE
WILL BE 2, AND
IN THE SUBUFD.

THE VALUES OF KEY HAVE THE FOLLOWING MEANINGS:

PAGE 22 REV. 2

ASTREE ALL ENTRIES IN THE TREE STRUCTURE ARE RETURNED UP TO MAXLEV
LEVELS DEEP. (LEVELS BELOW LEVEL MA XLEV ARE IGNORED.)

ASNUFD WHEN A SUBUFD IS ENCOUNTERED (IN THE HONE UFD), ITS ENTRY IS
RETURNED, BUT NO FILES UNDER THAT SUBUFD ARE RETURNED. IN
THE ABSENSE OF SEGMENT DIRECTORIES, THIS EFFECTIVELY LIMITS
THE TREE SCAN TO THE HOME UFD.

ASNSEG FILES INSIDE SEGMENT DIRECTORIES ARE NOT RETURNED.

ASCUFD THIS IS A LOGICAL COMBINATION OF ASNUFD AND A$NSEG
FILES IN THE HOME UFD ARE RETURNED.

- ONLY

ASDLAY THIS KEY IS
FNTRIES ARE
ASTREE), AND

IDENTICAL TO ASTREE EXCEPT
RETURNED TWICE, ONCE ON THE

AGAIN ON THE WAY UP. (THIS IS

THAT DIRECTORY
WAY DOWN (AS FOR
NECESSARY, FOR

EXAMPLE, TO IMPLEMENT TREE-DELETE FUNCTIONALITY, SINCE A
DIRECTORY CANNOT BE DELETED UNTIL IT HAS BEEN EMPTIED.)

ASBACK THIS KEY IS USED
ERROR HANDLING.

TO BACK UP ONE LEVEL IN THE TREE, USED FOR

NOIES_ON_US_ING_ISCNS&

1) FOR THE FIRST CALL OF TSCNSA, LEV SHOULD BE EQUAL TO
THEREAFTER IT
TOP LEVEL UFD

SHOULD NOT BE MODIFIED UNTIL EOF IS
AT WHICH POINT LEV WILL BE RESET TO

REACHED ON
0.

THE

2) THE ENTRIES IN THE ENTRY ARRAY ARE IN RDENSSFORMAT. FOR
"ENTRIES'* INSIDE A SEGMENT DIRECTORY, ALL INFORMATION FROM THE
DIRECTORY ENTRY IS FIRST COPIED DOWN A LEVEL. ENTRY(2,LEV) IS
SET TO n AND ENTRY(3,LEV) IS THEN SET TO A 16-BIT ENTRY NUMBER.
FOR NESTED SEGMENT DIRECTORIES, THE TYPE FIELD OF THE ENTRY IS
SET APPROPRIATELY BY OPENING THE FILE WITH SRCHSS. (THE FILE IS
THEN IMMEDIATELY CLOSED AGAIN.)

3) THE PARAMETER ENTSIZ IS SET TO THE NUMBER OF WORDS RETURNED BY
RDENSS. INSIDE SEGMENT DIRECTORIES, IT SHOULD BE IGNORED.

4) THE TYPE FIELDS IN THE ENTRY ARRAY — ENTRY(20,I) — SHOULD NOT
BE MODIFIED (TSCNSA USES THEM TO WALK UP AND DOWN THE TREE.)

5) WHEN TSCNSA REQUIRES A FILE UNIT, IT USES UNITS(LEV). BY USING
RDENSS AND SGDRSS READ-POSITION AND SET-POSITION FUNCTIONS
CAREFULLY, IT IS POSSIBLE TO DYNAMICALLY REUSE FILE UNITS (E.G.,
TO SCAN TREES MORE THAN 16 LFVELS DEEP).

6) TSCNSA RETURNS .TRUE. UNTIL A
RETURNED OR UNTIL ESEOF IS

NON-ZERO FILE SYSTEM CODE IS
RETURNED WITH LEV=Q (TOP LEVEL).

OF THE TREE IS "SUPPRESSED", AND CODE TS" ESEOF ON
RETURNED

LOWER LEVELS
AS ZERO.

7) TSCNSA REQUIRES OWNER RIGHTS IN THE HOME UFD.

PAGE REV. 2

SAMPLE USE OF TSCNSA

THE FOLLOWING PROGRAM ILLUSTRATES HOW TSCNSA CAN BE USED TO PERFORM
A TREE LISTF.

SINSERT SYSCOM>ERRD.F
SINSERT SYSCOM>KEYS.F
SINSERT SYSCOM>ASKEYS
C

INTEGER MAXLEV,MAXSIZ
PARAMETER MAXLEV=16 /* MAXIMUM LEVELS TO SCAN
PARAMETER MAXSIZ=?4 /* MAXIMUM SIZE OF EACH SLICE IN ENTRY
INTEGER I,L,ENTRY(MAXSIZ,MAXLEV),UNI.TS(MAXLEV),CODE,NLEVSA
LOGICAL TSCNSA
DATA UN I T S / 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 /

105 DO 200 1=1,L /* CONSTRUCT TREENAME
IF CENTRYC2,I).EQ.O) GOTO 150 /* BRANCH IF SEGDIR
CALL TNOUA(ENTRY(2,1),NLEN$A(ENTRY(2,1),32))

C
150

GOTO 170

CALL T N 0 U A (' (' , 1) / * FORMAT SEGDIR ENTRY NUMBER
CALL T0DEC<ENTRYC3,D)
CALL T N 0 U A (») * , 1)

170 IF CI.NE-L)
200 CONTINUE

CALL TONL

CALL TNOUAC > ' , 3) / * TREENAME SEPARATOR

GOTO 100
END

PAGE 24 REV. 2

4.2SSTRING MANIPULATION

FILL$A

FILLSA IS AN INTEGER FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

ÎN;t= FILLSA<NAME,NAMLEN,CHAR> ' .. :r
CALL FILLSA(NAME,NAMLEN,CHAR)

WHERE NAME = NAME BUFFER TO FILL
NAMLEN - LENGTH OF NAME IN CHARACTERS
CHAR = FILL CHARACTER IN FORTRAN AT FORMAT

NAMLEN AND CHAR ARE INTEGER*2 AND THE TYPE OF NAME DOESN'T MATTER.

THIS ROUTINE WILL FILL THE NAME BUFFER WITH THE FILL CHARACTER
SUPPLIED. . THE FUCTION IS INTEGER, BUT THE VALUE IS ALWAYS 0.

NLENSA

NLENSA IS AN INTEGER*2 FUNCTION WITH THE FOLLOWING CALLING SEQUENCE

1*2= NLENSA(NAME,NAMLEN)
CALL NLENSACNAME,NAMLEN)

WHERE NAME = NAME BUFFER TO TEST
NAMLEN = LENGTH OF NAME IN CHARACTERS

NAMLEN IS INTEGER*2 AND THE TYPE OF NAME DOESN'T MATTER.

THIS ROUTINE WILL RETURN AS ITS FUNCTION VALUE THE OPERATIONAL LENGTH
OF THE NAME IN NAME, NOT INCLUDING TRAILING BLANKS.

PAGE 25 REV. 2

MCHR$A

MCHRSA IS AN INTEGER FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

INT= MCHR$A(TARRAY,TCHAR,FARRAY,FCHAR)
CALL MCHR$A(TARRAY,TCHAR,FARRAY,FCHAR)

WHERE TARRAY = RECEIVING ("TO") PACKED ARRAY
TCHAR = CHARACTER POSITION IN TARRAY
FARRAY - SOURCE ("FROM") PACKED ARRAY
FCHAR = CHARACTER POSITION IN FARRAY

TCHAR AND FCAHR ARE INTEGER*2, BUT THF TYPES OF TARRAY AND FARRAY
DON'T MATTER.

THIS ROUTINE REPLACES THE FORTRAN STATFMENT:

TARRAYCTCHAR)=FARRAY(FCHAR)

WHEN TARRAY AND FARRAY ARE DECLARED LOGICAL*! (IBN FORTRAN) OR OF A T
CHARACTER DATA TYPE. ONLY THE TCHAR'TB CHARACTER IN TARRAY IS
REPLACED.

THE FUNCTION VALUE WILL BE THE CHARACTER THAT WAS MOVED IN FORTRAN A1
FORMAT; I.E., THE CHARACTER IN THE LEFT MOST BYTE, RIGHT PADDED WITH
BLANKS.

GCHRSA

GCHRSA IS AN INTEGFR FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

INT= GCHR$A(FARRAY,FCHAR)
CALL GCHR$A(FARRAY,FCHAR)

WHERE FARRAY = SOURCE ("FROM") PACKED ARRAY
FCHAR ? CHARACTER POSITION IN FARRAY

FCAHR IS INTEGER*2, BUT THE TYPE OF FARRAY DOESN'T MATTER.

THIS ROUTINE REPLACES THE FORTRAN STATEMENT:

CHAR=FARRAY(FCHAR)

WHEN FARRAY IS DECLARED LOGICAL*1 (IBN FORTRAN) OR OF A 1 CHARACTER
DATA TYPE.

THE FUNCTION VALUE WILL BE THE ACCESSED CHARACTER IN FORTRAN A1 FORMAT;
I.E., THE CHARACTER IN THE LEFT MOST BYTE, RIGHT PADDED WITH BLANKS.

PAGE 26 REV. 2

JREES/t "

TREESA IS AN LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= TREESA(NAME,NAMLEN,FSTART,FLEN) . '~~

WHERE NAME.'. = FILE NAME _
NAMLEN = LENGTH OF NAME IN CHARACTERS
FSTART = FIRST CHARACTER OF~FINAL FILE NAME IN TREE
FLEN = LENGTH OF FINAL FILE NAME IN_C HARAC.IERS

ALL ARGUMENTS ARE INT.EGER*2 AND THE TYPE OF NAME DOESN*T MATTER

THIS ROUTINE WILL SCAN A FILE NAME AND DETERMINE IF IT IS A TREE NAME.
IF IT IS A TREE NAME, THE FUNCTION IS -TRUE. AND IF NOT, IT IS
.FALSE.. IN ADDITION, THE FINAL NAME (OR ENTIRE NAME IF NOT IN A TREE)
IS LOCATED. IN
FSTART=FLEN=0.

THE STRING. NOTE THAT IF THE NAME IS EMPTY,

PAGE 27 REV. 2

TYPESA

TYPESA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG = TYPE$A(KEY,STRING,LENGTH)

ARGUMENTS:

KEY = STRING TYPE TO BE TESTED FOR, POSSIBLE KEYS ARE:
A$NAME - CAN STRING BE INTERPRETED AS A NAME,
A$DEC - CAN STRING BE INTERPRETED AS A DECIMAL NUMBER,
A$OCT - CAN STRING BE INTERPRETED AS AN OCTAL NUMBER,
AIHEX - CAN STRING BE INTERPRETED AS A HEXADECIMAL NUMBER.

STRING = STRING TO BE TESTED, PACKED TWO CHARACTERS PER WORD.
LENGTH = LENGTH OF STRING, IN CHARACTERS.

FUNCTION:

TYPE$A WILL TEST A CHARACTER STRING TO DETERMINE IF IT CAN BE
INTERPRETED AS THE TYPE SPECIFIED BY KEY. A STRING IS NAME IF IT
CONTAINS AT LEAST ONE ALPHABETIC OR SPECIAL CHARACTER (OTHER THAN A
LEADING + OR -) , A DECIMAL NUMBER IF IT CONTAINS ONLY THE DIGITS 0
- 9, AN OCTAL NUMBER IF IT CONTAINS ONLY THE DIGITS 0 - 7 , AND A
HEXADECIMAL NUMBER IF IT CONTAINS ONLY THE DIGITS 0 - 9 AND THE
CHARACTERS A - F (UPPER CASE ONLY). A NUMBER MAY HAVE A LEADING
SIGN AND ANY NUMBER OF BLANKS BETWEEN THE SIGN AND THE FIRST DIGIT,
HOWEVER IMBEDDED BLANKS WITHIN THE NUMBER ITSELF ARE NOT ALLOWED.
A NUMBER MUST ALSO HAVE AT LEAST ONE DIGIT.

LEADING AND TRAILING BLANKS ARE IGNORED. THE FUNCTION IS TRUE
IF STRING SATISFIES THE CONDITIONS REQUIRED BY THE KEY USED,
OTHFRWISE IT IS FALSE. A NULL STRING (IE. LENGTH EQUAL TO ZERO)
WILL ONLY RETURN A FUNCTION VALUE OF TRUE IF KEY IS ASNAME.

ALL ARGUMENTS ARE INTEGER*? EXCEPT STRING WHOSE TYPE DOES NOT
MATTER.

APPLIB CALLS

GCHR$A, NLENSA

PAGE 28 REV,

MSTRSA

MSTR$A IS AN INTEGER FUNCTION USED TO MOVE ONE
HAS THE FOLLOWING CALLING SEQUENCE:

STRING TO ANOTHER, IT

INT = MSTRSA(A,ALEN,B,BLEN)
CALL MSTR$A(A,ALEN,8,BLEN)

ARGUMENTS

= SOURCE STRING, PACKED TWO CHARACTERS PER WORD,
ALEN = LENGTH OF A, IN CHARACTERS,. MUST BE .6E. ZERO,
B = DESTINATION STRING, PACKED,
BLEN = LENGTH OF B, IN CHARACTERS, MUST BE .GE. ZERO.

FUNCTION

MSTRSA WILL MOVF THE SOURCE STRING TO THE DESTINATION STRING.
IF THE SOURCE STRIN6 IS LONGER THAN THE DESTINATION STRING IT WILL
BE TRUNCATED AND IF IT IS SHORTER IT WILL BE PADDED WITH BLANKS.
THE SOURCE AND DESTINATION STRINGS MAY OVERLAP. THE FUNCTION VALUE
WILL BE EQUAL TO THE NUMBER OF CHARACTERS MOVED (EXCLUDING BLANK
PADDING). IF EITHER STRING IS NULL (IE. LENGTH EQUAL TO ZERO) NOT
CHARACTERS ARE MOVED AND THE FUNCTION WILL BE EQUAL TO ZERO.

ALL
MATTER.

ARGUMENTS ARE INTEGER*? EXCEPT A AND B WHOSE TYPES DO NOT

APPLIB CALLS

MSUBSA, NLENSA

PAGE ?9 REV. 2

WSUBSA

MSUBSA IS AN INTEGER FUNCTION USED
HAS THE FOLLOWING CALLING SEQUENCE

TO MOVE ONE SUBSTRING TO ANOTHER, IT

INT = MSUB$A(A,ALEN,AFC,ALC,B,BLEN,BFC,BLC)
CALL MSUB$A(A»ALEN,AFC,ALC,B,BL£N,BFC,BLC)

ARGUMENTS:

A * ARRAY CONTAINING SOURCE SUBSTRING, PACKED TWO CHARACTERS PER
WORD,

ALEN = LENGTH OF A, IN CHARACTERS, MUST BE -GE. ZERO,
AFC = FIRST CHARACTER POSITION OF SUBSTRING IN A,
ALC = LAST CHARACTER POSITION OF SUBSTRING IN A,
B = ARRAY CONTAINING DESTINATION SUBSTRING, PACKED TWO

CHARACTERS PER WORD,
BLEN = LENGTH OF B, IN CHARACTERS, MUST BE .GE. ZERO, -
BFC = FIRST CHARACTER POSITION OF SUBSTRING IN B,
BLC = LAST CHARACTER POSITION OF SUBSTRING IN B.

FUNCTION

MSUBSA WILL MOVE THE SOURCE SUBSTRING CONTAINED IN A TO THE
DESTINATION SUBSTRING CONTAINED IN B. IF THE SOURCE SUBSTRING IS
LONGER THAN THE DESTINATION SUBSTRING IT WILL BF TRUNCATED AND IF
IT IS
DESTIN

IF

SHO
ATION
EITH

RTER
SUBS

ER SU

IT WILL
TRINGS MA
BSTRING I

BE PADDED
Y OVERLAP.
S NULL (IE.

WITH BLANKS. THE SOURCE AND

LENGTH EQUAL TO ZERO) NO
CHARAC
OTHERW
BLANKS

TFRS
ISE I
USED

ARE
T IS
FOR

MOVED A
EQUAL TO
PADDING).

ND THE FUNCTION WILL BE EQUAL TO ZERO,
THE NUMBER OF CHARACTERS MOVED (EXCLUDING

THIS ROUTINE CHECKS THE VALIDITY OF THE STRING SUBSCRIPTS AND
WILL DISPLAY AN ERROR MESSAGE IF AN ILLEGAL SUBSCRIPT IS
ENCOUNTERED. A SUBSCRIPT MUST BE GREATER THAN ZERO (UNLESS BOTH
ARE ZERO, IN WHICH CASE THE SUBSTRING IS NULL) AND THE SECOND
SUBSCRIPT MUST BE GREATER THAN OR EQUAL TO THE FIRST. BOTH
SUBSCRIPTS MUST BE LESS THAN OR EQUAL TO THE STRING LENGTH.

ALL
MATTER.

ARGUMENTS ARE INTEGER*2 EXCEPT A AND B WHOSE TYPES DO NOT

APPLIB CALLS:

MCHR$A

PAGE 30 REV. 2

CSjRSA

CSTRSA IS A LOGICAL FUNCTION USED TO COMPARE TWO STRINGS FOR EQUALITY,
IT HAS THE FOLLOWING CALLING SEQUENCE:

LOG = CSTR$A(A,ALEN,B,BLEN)

ARGUMENTS :

A = STRING TO BE COMPARED, PACKED TWO CHARACTERS PER WORD,
ALEN = LENGTH OF A, IN CHARACTERS, MUST BE .GE. ZERO,
B = STRING TO BE COMPARED AGAINST, PACKED,
BLEN = LENGTH OF B, IN CHARACTERS, MUST BE .GE. ZERO.

FUNCTION:

CSTRSA WILL COMPARE TWO STRINGS FOR EQUALITY. THE FUNCTION
WILL BE TRUE IF EACH CHARACTER IN STRING A MATCHES THE
CORRESPONDING CHARACTER IN STRING B, OR IF BOTH STRINGS ARE NULL
(IE. LENGTH EQUAL TO ZERO), OTHERWISE THE FUNCTION WILL BE FALSE.
ONLY THE OPERATIONAL LENGTHS ARE USED IN THE C0MPAR1SI0N (IE.
TRAILING BLANKS ARE IGNORED). CSTRSA AVOIDS THE RESTRICTIONS
IMPOSED BY NAMEQS CONCERNING TRAILING BLANKS AND NUMERIC FIELDS.

ALL ARGUMENTS ARE INTEGER*2 EXCEPT A AND B WHOSE TYPES DO NOT
MATTER.

APPLIB CALLS:

CSUBSA, NLENSA

PAGE 31 REV. 2

CSUBSA

CSUB$A IS A LOGICAL FUNCTION USED TO COMPARE SUBSTRINGS FOR EQUALITY,
IT HAS THE FOLLOWING CALLING SEQUENCE:

LOG = CSUB$A(A,ALEN,AFC,ALC,B,BLEN,BFC,BLC>

ARGUMENTS :

A = ARRAY CONTAINING SUBSTRING TO BE COMPARED, PACKED TWO
CHARACTERS PER WORD,

ALEN - LENGTH OF A, IN CHARACTERS, MUST BE .6E. ZERO,
AFC = FIRST CHARACTER POSITION OF SUBSTRING IN A,
ALC = LAST CHARACTER POSITION OF SUBSTRING IN A,
B = ARRAY CONTAINING SUBSTRING TO BE COMPARED AGAINST, PACKED

TWO CHARACTERS PER WORD,
BLEN - LENGTH OF B, IN CHARACTERS, MUST BE .GE. ZERO,
BFC = FIRST CHARACTER POSITION OF SUBSTRING IN B, _ _ _ ^ _
BLC = LAST CHARACTER POSITION OF SUBSTRING IN B.

FUNCTION:

CSUBSA WILL COMPARE TWO SUBSTRINGS FOR EQUALITY. IF EACH
CHARACTER IN THE A SUBSTRING MATCHFS THE CORRESPONDING CHARACTER IN
THE B SUBSTRING, OR BOTH SUBSTRINGS ARE NULL (IE. LENGTH EQUAL TO
ZERO) THE FUNCTION WILL BE TRUE. IF TWO CORRESPONDING CHARACTERS
DO NOT MATCH, OR IF THE LENGTHS OF THE SUBSTRINGS ARE NOT EQUAL THE
FUNCTION WILL BE FALSE.

THIS ROUTINE CHECKS THE VALIDITY OF THE STRING SUBSCRIPTS AND
WILL DISPLAY AN ERROR MESSAGE IF AN ILLEGAL SUBSCRIPT IS
ENCOUNTERED. A SUBSCRIPT MUST BE GREATER THAN ZERO (UNLESS BOTH
ARE ZERO, IN WHICH CASE THE SUBSTRING IS NULL) AND THE SECOND
SUBSCRIPT MUST BE GREATER THAN OR EQUAL TO THE FIRST. BOTH
SUBSCRIPTS MUST BE LESS THAN OR EQUAL TO THE STRING LENGTH.

ALL ARGUMENTS ARE INTEGER*2 EXCEPT A AND B WHOSE TYPES DO NOT
MATTER.

APPLIB CALLS:

GCHR$A

PAGE 3? REV. 2

LSTRfcA

LSTRSA IS A LOGICAL FUCTION USED TO LOCATE ONE STRING
IT HAS THE FOLLOWING CALLING SEQUENCE:

WITHIN ANOTHER,

LOG = LSTR$A(A,ALEN,B,BLEN,FCP,LCP>
CALL LSTR$A(A,ALEN,B,BLEN,FCP,LCP)

ARGUMENTS:

A = STRING TO BE LOCATED, PACKED TWO CHARACTERS PER WORD,
ALEN = LENGTH OF A, IN CHARACTERS, MUST BE .GE. ZERO,
B = STRING TO BE SEARCHED, PACKED,
BLEN = LENGTH OF 8, IN CHARACTERS, MUST BE
FCP = FIRST CHARACTER POSITION IN B OF

.GE. ZERO,
SUBSTRING THAT MATCHES

STRING A,
LCP = LAST CHARACTER

STRING A.
POSITION IN B OF SUBSTRING THAT MATCHES

FUNCTION:

LSTRSA WILL SEARCH STRING
IF STRING A IS FOUND THE

B FOR THE FIRST OCCURENCE OF STRING
FUNCTION WILL BE TRUE AND FCP AND LCP

WILL BE EQUAL TO THE CHARACTER POSITIONS OF THE SUBSTRING IN B THAT
MATCHES STRING A. IF STRING A IS NOT FOUND OR IF EITHER STRING IS
NULL (IE. LENGTH EQUAL TO ZERO) THE FUNCTION WILL BE FALSE AND FCP
AND LCP WILL BE EQUAL TO ZERO. EACH STRING IS LOGICALLY TRUNCATED
TO ITS OPERATIONAL LENGTH BEFORE THE SEARCH IS PERFORMED (IE.
TRAILING BLANKS ARE IGNORED).

ALL
MATTER.

ARGUMENTS ARE INTEGER*2 EXCEPT.A AND B WHOSE TYPES DO NOT

APPLIB CALLS:

LSUPSA, NLENSA

PAGE 33 REV. 2

LSUBSA

LSUBSA IS A LOGICAL FUNCTION USED TO LOCATE ONE SUBSTRING WITHIN
ANOTHER, IT HAS THE FOLLOWING CALLING SEQUENCE:

LOG = LSUB$A(A,ALEN,AFC,ALC,B,BLEN,BFC,BLC,FCP,LCP)
CALL LSUB$A(A,ALEN,.AFC,ALC,B„BLEN,BFC„BLC,FCP,LCP)

ARGUMENTS:

A = ARRAY CONTAINING SUBSTRING TO BE LOCATED, PACKED TWO
CHARACTERS PER WORD,,

ALEN = LENGTH OF A, IN CHARACTERS, MUST BE .6E. ZERO,
AFC = FIRST CHARACTER POSITION OF SUBSTRING IN A,
ALC = LAST CHARACTER POSITION OF SUBSTRING IN A,
B = ARRAY CONTAINING SUBSTRING TO BE SEARCHED, PACKED TWO

CHARACTERS PER WORD,
BLEN = LENGTH OF B, IN CHARACTERS, MUST BE .6E. ZERO, ^ _ ^ _
BFC = FIRST CHARACTER POSITION OF SUBSTRING IN B,
BLC = LAST CHARACTER POSITION OF SUBSTRING IN B,
FCP = FIRST CHARACTER POSITION IN B OF SUBSTRING THAT MATCHES

SUBSTRING IN A,
LCP = LAST CHARACTER POSITION IN B OF SUBSTRING THAT MATCHES

SUBSTRING IN A.

FUNCTION:

LSUBSA WILL SEARCH THE SUBSTRING CONTAINED IN B FOR THE FIRST
OCCURENCE OF THE SUBSTRING CONTAINED IN A. IF A MATCH IS FOUND FCP
AND LCP WILL BE EQUAL TO THE CHARACTER POSITIONS IN B OF THE
MATCHING SUBSTRING AND THE FUNCTION WILL BE TRUE. IF A MATCHING
SUBSTRING CANNOT BE FOUND OR IF EITHER SUBSTRING IS NULL (IE.
LENGTH EQUAL TO ZERO) THE FUNCTION WILL BE FALSE AND FCP AND LCP
WILL BE EQUAL TO ZERO.

THIS ROUTINE CHECKS THE VALIDITY OF THE STRING SUBSCRIPTS AND
WILL DISPLAY AN ERROR MESSAGE IF AN ILLEGAL SUBSCRIPT IS
ENCOUNTERED. A SUBSCRIPT MUST BE GREATER THAN ZERO (UNLESS BOTH
ARE ZERO, IN WHICH CASE THE SUBSTRING IS NULL) AND THE SECOND
SUBSCRIPT MUST BE GREATER THAN OR EQUAL TO THE FIRST. BOTH
SUBSCRIPTS MUST BE LESS THAN OR EQUAHE STRING LENGTH.

ALL ARGUMENTS ARE INTEGER*2 EXCEPT A AND B WHOSE TYPES DO NOT
MATTER.

APPLIB CALLS

CSUBSA

PAGE 34 REV. 2

JSJRSA - ' : - ---V:••' • •

JSTRSA IS A LOGICAL FUNCTION USED TO LEFT OR RIGHT JUSTIFY A STRING, IT
HAS THE FOLLOWING CALLING SEQUENCE:

LOG = JSTR$A(KEY,STRING,LENGTH>
CALL J STRSA(KE Y,STRING,LENGTH)

ARGUMENTS

KEY DETERMINES DIRECTION
ARE:;

OF JUSTIFICATION, POSSIBLE VALUES

STRING =

A$RGHT - RIGHT JUSTIFY,
ASLEFT - LEFT JUSTIFY,
STRING TO BE JUSTIFIED, PACKED TWO CHARACTERS PER WORD,

LENGTH = LENGTH OF STRING IN CHARACTERS, MUST BE .G.E. ZERO.

FUNCTION:

JSTRSA WILL LEFT OR RIGHT JUSTIFIY A STRING WITHIN ITSELF THE
FUNCTION WILL BE TRUE IF JUSTIFICATION IS SUCCESSFUL, FALSE IF THE
STRING LENGTH IS LESS THAN ZERO OR IF A BAD KEY IS USED.

ALL ARGUMENTS ARE INTEGER*2 EXCEPT STRING WHOSE TPYE DOES NOT"
MATTER.

•AFPLIB CALLS:

NLENSA, FILLSA, MSUBS A, GCHRSA

PAGE 35 REV. 2

4.3 USER QUERY

YSNOSA

YSNO$A IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= YSNO$A(MSG,MSGLEN,DEFKEY)

WHERE MSG = MESSAGE TEXT
MSGLEN = MESSAGE LENGTH IN CHARACTERS
DEFKEY = A$NDEF, NO DEFAULT ACCEPTED

A$DNO , DEFAULT = "NOH (.FALSE.)
A$DYES, DEFAULT = "YES" (.TRUE.)

MSGLEN AND DEFKEY ARE INTEGER*2
MATTER.

THE TYPE OF MSG DOESN'T

THIS ROUTINE WILL PRINT THE SUPPLIED MESSAGE AND APPEND THE
CHARACTERS "? M TO IT. IT THEN READS A USER RESPONSE. IF THE
ANSWER IS "YES" OR "OK", THE FUNCTION VALUE IS .TRUE.. IF THE
ANSWER IS "NO", THE FUNCTION VALUE IS .FALSE.. IF AN ILLEGAL
ANSWER IS PROVIDED OR IF NO DEFAULT IS ACCEPTED, MSG WILL BE
REPEATED.

NOTE, USER RESPONSES WAY BE ABBREVIATED TO FIRST 1 OR 2
CHARACTERS.

RNAM$A

RNAMSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= RNAMSA(MSG,MSGLEN,NAMKEY,NAWE,NAMLEN)

WHERE MSG = MESSAGE TEXT
MSGLEN = MESSAGE LENGTH IN CMRACTERS
NAMKEY = ASFUPP, FORCE UPPER CASE (.NE. ASUPLW OR ASRAWI)

NAME

ASUPLW, DO NOT FORCE UPPER CASE
ASRAWI, READ REST OF LINE

= RETURNED NAME
NAMLEN = LENGTH OF NAME BUFFER IN CHARACTERS (.LE. 80)

ALL ARGUMENTS ARE INTEGER*2 EXCEPT MSG AND NAME WHICH DON'T
MATTER.

THIS ROUTINE FILLS NAME WITH BLANKS AND THEN PRINTS THE
SUPPLIED MESSAGE AND APPENDS THE CHARACTERS ": " TO IT. IT THEN
READS A USER RESPONSE. IF THE RESPONSE IS NOT A LEGAL NAME OR IF
THE NAME PROVIDED IS TOO LONG FOR THE SUPPLIED BUFFER, THE ERROR
WILL BE REPORTED AND MSG WILL BE REPEATED.
THE VALUE OF THE FUNCTION WILL BE .FALSE..
PROVIDED, THE FUNCTION VALUE WILL BE .TRUE.

IF NO NAME IS PROVIDED,
IF A LEGAL NAME IS

PAGE 36 REV. 2

RNUM$A

RNUMSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= RNUM$A(MS6,MSGLEN,NUMKEY,VALUE)

WHERE MSG = MESSAGE TEXT
MSGLEN = MESSAGE LENGTH IN CHARACTERS
NUMKEY = A$DEC, DECIMAL (-NE. A$OCT OR ASHEX)

A$OCT, OCTAL
A$HEX, HEXADECIMAL

VALUE = RETURNED VALUE

ALL ARGUMENTS ARE INTEGER*2 EXCEPT VALUE WHICH IS
INTEGER*4.

THIS ROUTINE WILL PRINT THE SUPPLIED MESSAGE AND APPEND THE
CHARACTERS ": " TO IT. IT THEN READS A USER RESPONSE, IF THE
RESPONSE IS NOT A LEGAL NUMBER OR IF THE NUMBER PROVIDED HAS TOO
MANY DIGITS FOR AN INTEGER*4 VALUE, THE ERROR WILL BE REPORTED AND
MSG WILL BE REPEATED. IF NO NUMBER IS PROVIDED, THE VALUE OF THE
FUNCTION WILL BE .FALSE. AND VALUE=0. IF A LEGAL NUMBER IS
PROVIDED, THE FUNCTION VALUE WILL BE .TRUE. AND THE VALUE WILL BE
RETURNED IN VALUE.

NOTE, NUMBERS MAY BF PRECEDED BY A "+" OR "-".

PAGE 37 REV. 2

A.A SYSTEM INFORMATION

TIMESA

TIMESA IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING
SEQUENCE:

R*8 = TIMESA(TIME)
CALL T1ME$A(TIME)

WHERE TIME = TIME OF DAY IN THE FORM "HR:MN:SC"

THE TYPE OF THE TIME ARRAY DOES NOT MATTER AS LONG AS IT IS
AT LEAST 8 CHARACTERS LONG.

THIS ROUTINE RETURNS THE TIME 57 D~AY IN THE FORM
"HR:MN:SCH.

THE VALUE OF THE FUNCTION IS THE TIME OF DAY IN DECIMAL HOURS.
THIS VALUE MAY BE RECEIVED AS EITHER REAL** OR REAL*8.

CTIMS A

CT1MSA IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING
SEQUENCE:

R*8 = CTIMSA(CPUTIM)
CALL CTIMSA(CPUTIM)

WHERE CPUTIM = CPU TIME IN CENTISECONDS

CPUTIM IS INTEGER**.

THIS ROUTINE RETURNS CPU TIME SINCE LOGIN AS INTEGER**
CENTISECONDS IN THE CPUTIM ARGUMENT.

THE FUNCTION VALUE WILL BE CPU TIME SINCE LOGIN IN SECONDS.
THIS VALUE MAY BE RECEIVED AS EITHER REAL** OR REAL*8.

PAGE 38 REV. 2

DTIM$A

DTIPiSA IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING
SEQUENCE:

R*8 = DTIMSACDSKTIM) ':'' ~] ' ' : —fp;-'v ' ^ _ _ _
CALL DTIM$A(DSKTIM)

WHERE DSKTIM = DSK TIME IN CENTISECONDS

DSKTIM IS INTEGER*4.

THIS ROUTINE RETURNS DISK TIME SINCE LOGIN AS INTEGER*4
CENTISECONDS IN THE DSKTIM ARGUMENT.

THE FUNCTION VALUE WILL BE DISK TIME SINCE LOGIN IN SECONDS.
THIS VALUE MAY BE RECEIVED AS EITHER REAL*4 OR REAL*8.

DATESA

DATESA IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING
SEQUENCE: ' •" '; • " ".V.": :.' !t"" ;- • / . = . ' ':;v'

R*8 = DATESA(DATE)
CALL DATESA(DATE)

WHERE DATE = DATE IN THE FORM "DAY, MON DD 19YR"

THE TYPE OF THE DATE ARRAY DOES NOT MATTER AS LONG AS IT IS
AT LEAST 16 CHARACTERS LONG.

THIS ROUTINE RETURNS THE DATE IN THE FORM "DAY, MON DD
19YR"

THE VALUE OF THE FUNCTION IS THE DATE IN THE FORM "MM/DD/YR".
THIS VALUE MUST BE RECEIVED AS REAL*8.

NOTE THAT THIS ROUTINE IS GOOD FOR THE PERIOD JANUARY 1, 1977
THROUGH DECEMBER 31, 1986.

PAGE 3 9 REV. 2

EDATSA

EDATSA IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING
SEQUENCE:

R*8= EDATSA(EDATE)
CALL EDATSA(EDATE)

WHERE EDATE = DATE IN THE FORM "DAY, DP MON 19YR"

THE TYPE OF THE EDATE ARRAY DOES NOT MATTER AS LONG AS IT
IS AT LEAST 16 CHARACTERS LONG,

THIS ROUTINE RETURNS THE DATE IN THE EUROPEAN (MILITARY) FORM
"DAY, DP WON 19YR".

THE VALUE OF THE FUNCTION IS THE DATE IN THE FORM "DD/MM/YR%
THIS VALUE BUST BE RECEIVED AS REAL*8,

NOTE THAT THIS ROUTINE IS GOOD FOR THE PERIOD 1 JANUARY 1977
THROUGH 31 DECEMBER 1986.

DOFYSA

DOFY$A IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING
SEQUENCE:

R*8 = DOFYSA(DOFY)
CALL DOFYSA(DOFY)

WHERE DOFY = DAY OF YEAR IN THE FORM "DDD "

THE TYPE OF THE DOFY ARRAY DOES NOT MATTER AS LONG AS IT IS
AT LEAST 4 CHARACTERS LONG.

THIS ROUTINE RETURNS THE DAY OF THE YEAR IN THE FORM
DDD ".

THE VALUE OF THE FUNCTION IS THE DATE IN THE FORM YR.DDD
SUITABLE FOR PRINTING IN FORMAT F6.3. THIS VALUE CAN BE RECEIVED
AS EITHER REAL*4 OR REAL*8.

NOTE THAT THIS ROUTINE IS GOOD FOR THE PERIOD JANUARY 1, 1977
THROUGH DECEMBER 3 1 , 1986.

PAGE 40 REV. 2

4.5 MATHEMATICAL

RNDISA

RNDI$A IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING
SEQUENCE:

R*8= RNDISA(SEED)
CALL RNDISA(SEED)

WHERE SEED = TIME OF DAY IN CENTISECONDS

~ SEED IS INTEGER*4. ~ ~~'

THIS ROUTINE RETURNS THE TIME OF DAY IN CENTISECONDS. THE
FUNCTION VALUE WILL BE THE TIME OF DAY IN SECONDS. THIS VALUE MAY
BE RECEIVED AS EITHER REALM OR REAL*8

NOTE, BECAUSE THIS FUNCTION IS USED TO INITIALIZE A RANDOM
NUMBER GENERATOR, IF THE VALUE IS EXACTLY G, 1234567 OR 12345.67
WILL BE RETURNED INSTEAD.

PAGE 41 REV. 2

RAND$A

RANDSA IS A DOUBLE PRECISION FUNCTION WITH THE FOLLOWING CALLING
SEQUENCE:

R*8 = RAND$A(SEED)
CALL RANDSA(SEED)

WHERE SEED = INPUT IS PREVIOUS SEED, OUTPUT IS NEW SEED

SEED IS INTEGER*4.

THIS ROUTINE UPDATES A SEED TO A NEW SEED (SEED) BASED UPON
THE LINEAR CONGRUENTIAL METHOD:

U(I)=FLOAT(K(I)) t¥\ : _ ~~ ~~

WHERE K(I) = B*JC(I-1) KODULO PI j : • '
B = 16807.0
n = 2**31-1 = 2147483647.0

B AND H ARE FROM: LEWIS, GOODMAN, AND MILLER, "A PSEUDO-RANDOM
NUMBER GENERATOR FOR THE SYSTEM/360", I.EM SYSTEMS JOURNAL, VOL 8,
NO 2, 1969, PP 136-145. ' __ : v. ' \; -̂ "" '• '••>:,]:

KCI-1) IS THE INPUT VALUE OF SEED AND K CI) IS THE RETURNED
VALUE.

THE VALUE OF THE FUNCTION IS UCI) WHICH REPRESENTS A
PROBABILITY AND IS BETWEEN 0.0 AND 1.0. THIS VALUE WAY BE RECEIVED
AS EITHER REAL*4 OR REAL*8.

PAGE A? REV. 2

A.6 CONVERSION

ENCDJA

ENCDSA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= ENCD$A(ARRAY,WIDTH,DEC,VALUE)
CALL ENCD$A(ARRAY,WIDTH,DEC,VALUE)

WHERE ARRAY = ARRAY TO RECEIVE VALUE
WIDTH = FIELD WIDTH AS IN FORMAT FW.D (SHOULD BE EVEN)
DEC = PLACES TO RIGHT OF DECIMAL PT . AS IN FORMAT FW.D
VALUF = DOUBLE PRECISION VALUE TO BE ENCODED

WIDTH AND DFC ARE INTEGER*2, VALUE IS REAL*S, AND THE TYPE
OF ARRAY DOESN'T MATTER.

THIS ROUTINE WILL ATTEMPT TO ENCODE VALUE IN THE SUPPLIED FW.D
FORMAT IF IT WILL FIT. IF NOT, THE DEC ARGUMENT IS DECREMENTED
(MOVING THE DECIMAL POINT TO THE RIGHT) UNTIL IT WILL FIT. IF DEC
REACHES 0, OR IS ORIGINALLY SUPPLIED AS 0, VALUE WILL BE ENCODED IN
IW FORMAT IF THE NUMBER WILL FIT INTO A 32-BIT INTEGER. IF NOT,
AND IF THE FIELD IS WIDE ENOUGH (WIDTH > 7) , THE VALUE WILL BE
ENCODED IN E FORMAT. IF THE FIELD IS NOT WIDE ENOUGH, IT WILL BE
FILLED WITH ASTERISKS.

NOTE THAT THE LARGEST VALUE OF WIDTH WILL BE 16. IF IT IS
LARGER THAN 16, ONLY THE FIRST 16 CHARACTERS OF ARRAY WILL BE USED.

THE FUNCTION VALUE WILL BE .TRUE. IF THE ENCODE WAS SUCCESSFUL
AND .FALSE. IF THE FIELD WAS FILLED WITH ASTERISKS.

NOTE THAT ARRAY IS THE ONLY ARGUMENT WHICH IS ACTUALLY MODIFIED
IN THE CALLING PROGRAM

PAGE A3 REV. 2

CNVASA

CNVASA IS A LOGICAL FUNCTION WITH THE FOLLOWING CALLING SEQUENCE:

LOG= CNVA$A(NUMKEY,NAME,NAMLEN,VALUE)
CALL CNVA$A (NUMKEY,NAME,NAML£N,VALUE)

WHERE NUMKEY = A$DEC, DECIMAL (-NE. ASOCT OR ASHEX)
A$OCT# OCTAL
ASHEX, HEXADECIMAL

NAME = ASCII NUMBER STRING
NAMLEN = LENGTH OF NAME IN CHARACTERS
VALUE = RETURNED VALUE

NUMKEY AND NAMLEN ARE INTEGER+2, VALUE IS INTEGER*^, AND
THE TYPE OF NAME DOESN'T MATTER.

THIS ROUTINE WILL CONVERT AN ASCII DIGIT STRING INTO ITS BINARY
VALUE FOR DECIMAL,, OCTAL AND HEXADECIMAL NUMBERS. THE NUMBERS MAY
BE EXPLICITLY SIGNED. LEADING AND TRAILING BLANKS ARE IGNORED AS
WELL AS BLANKS BETWEEN THE SIGN AND THE NUMBER. HOWEVER, BLANKS
WITHIN THE NUMBER ARE NOT
SUCCESSFULLY, THE FUNCTION IS
AND VALUE=0. NOTE THAT FOR

ALLOWED. IF THE
.TRUE. AND IF NOT,
DECIMAL CONVERSIONS,

NUMBER CONVERTS
IT IS .FALSE.

OVERFLOW WILL BE
CONSIDERED AS UNSUCCESSFUL WHEREAS FOR
CONVERSIONS, OVERFLOW IS IGNORED.

OCTAL AND HEXADECIMAL

PAGF 44 REV

CNVBSA

CNVBSA IS AN INTEGER FUNCTION USED TO CONVERT A BINARY NUMBER TO AN
ASCII DIGIT STRING, IT HAS THE FOLLOWING CALLING SEQUENCE:

1*2 = CNVB$A(NUMKEY,VALUE,NAME,NAMLEN)

ARGUMENTS:

NUMKEY - NUMBER BASE TO CONVERT TO, POSSIBLE VALUES ARE:
A$DEC - SIGNED DECIMAL NUMBER WITH LEADING BLANKS,
ASDSCU - UNSIGNED DECIMAL NUMBER WITH LEADING BLANKS,
A$DECZ - SIGNED DECIMAL NUMBER WITH LEADING ZEROS,
A$OCT - SIGNED OCTAL NUMBER, LEADING BLANKS
ASOCTZ - SIGNED OCTAL, LEADING ZEROS,
A$HEX - SIGNED HEXADECIMAL, LEADING BLANKS,
A$HEXZ - SIGNED HEXADECIMAL, LEADING ZEROS.

= RETURNED STRING FOR ASCII NUMBER. NAME
NAMLEN = LENGTH OF NAME IN CHARACTERS.
VALUE = INTEGER*4 BINARY NUMBER TO BE CONVERTED.

FUNCTION:

CNVBSA WILL CONVERT A BINARY NUMBER INTO AN ASCII DIGIT STRING
FOR DECIMAL, OCTAL, AND HEXADECIMAL NUMBERS. THE RETURNED DIGIT
STRING WILL BE RIGHJ JUSTIFIED IN NAME AND PRECEDED BY LEADING
BLANKS OR ZEROS.

IF VALUE IS NEGATIVE AND TO BE TREATED AS SIGNED DECIMAL, NAME
WILL BEGIN WITH AN INITIAL "-" SIGN. IF THE NUMBER CONVERTS
SUCCESSFULLY, THE
NOT, IT IS ZERO.

FUNCTION VALUE IS THE NUMBER OF DIGITS AND IF

TS INTEGER*4, ALL ARGUMENTS ARE INTEGER*2 EXCEPT VALUE, WHICH
AND NAME, WHOSE TYPE DOES NOT MATTER.

APPLIB CALLS:

FILLSA, MCHRSA

PAGE 45 REV. 2

4.7HPARSING

CMDLSA

CMDL$A IS A LOGICAL FUNCTION FOR PARSING A PRIMOS TYPE COMMAND L INE AND
HAS THE FOLLOWING CALLING SEQUENCE:

LOG = C?«DL$A<KEY,KWLIST,KWINDX,OPTBUF,BUFLEN,OPTION,VALUE,KWINFO)
CALL CMDL$A(KEY„KWLIST,KWINDX,OPTBUF,BUFLEN,OPTION,VALUE,KWINFO)

ARGUMENTS

KEY = ASREAD, RETURN THE NEXT KEYWORD ENTRY IN THE COMMAND LINE.
= ASNEXT, CALL COMANL TO GET THE NEXT COMMAND LINE, TURN ON

DEFAULT PROCESSING, AND RETURN THE FIRST KEYWORD ENTRY IN
THE NEW COMMAND LINE

= ASRSET, RESET THE COMMAND LINE POINTER TO THE BEGINNING OF
THE COMMAND LINE AND TURN ON DEFAULT PROCESSING. USE OF
THIS KEY DOES NOT RETURN A KEYWORD ENTRY.

= ASRAWI, RETURN THE REMAINDER OF THE COMMAND LINE AS RAW
TEXT AND TURN ON THE END OF LINE INDICATOR. TEXT STARTS
AT THE TOKEN FOLLOWING THE OPTION (IF PRESENT) OF THE LAST
KEYWORD ENTRY READ.

= ASNKWL, TURN ON DEFAULT PROCESSING AND RETURN THE NEXT
KEYWORD ENTRY IN THE COMMAND LINE. THIS KEY ALLOWS THE
CALLING PROGRAM TO SWITCH KEYWORD LISTS IN THE MIDDLE OF A
COMMAND LINE.

KWLIST = A ONE DIMENSIONAL ARRAY CONTAINING CONTROL INFORMATION, A
TABLE OF KEYWORD ENTRY DESCRIPTIONS, AND A LIST OF DEFAULT
KEYWORDS. SEE SECTION TITLED KWUSI_F ORMA T FOR A COMPLETE
DESCRIPTION. "

KWINDX = KEYWORD INDEX, RETURNED INTEGER VARIABLE IDENTIFYING THE
KEYWORD IN A KEYWORD ENTRY, POSSIBLE VALUES ARE:

< 0, UNRECOGNIZED KEYWORD OR CMDLSA WAS CALLED WITH A KEY OF
ASRSET OR ASRAWI.

= Q, END OF LINE.
> 0, VALID KEYWORD.

OPTBUF = PACKED ARRAY THAT NORMALLY CONTAINS THE TEXT OF A KEYWORD
OPTION, HOWEVER IF AN UNRECOGNIZED KEYWORD IS ENCOUNTERED
OPTBUF CONTAINS THE TEXT OF THAT KFYWORD.

BUFLEN = SPECIFIED LENGTH OF OPTBUF IN CHARACTERS, MUST BE -GE.
ZERO.

OPTION = OPTION TYPE, RETURNED INTEGER VARIABLE THAT DESCRIBES THE
OPTION FOLLOWING A KEYWORD, POSSIBLE VALUES ARE:

= ASNONE, NO OPTION, OR OPTION WAS NULL, OPTBUF WILL BE

PAGE 46 REV

BLANK. ; :?mir-~ • - : .,;. •-• :- ' '
= ASNAME, OPTION WAS A NAME
= ASNUMB, OPTION WAS A NUMBER, RESULTS OF NUMERIC CONVERSION

RETURNED IN VALUE,
= A$NOVF r OPTION WAS A NUMBER AND CONVERSION RESULTED IN

OVERFLOW (DECIMAL NUMBERS O N L Y) .

VALUE = RETURNED INTEGER*4 VARIABLE EQUAL TO THE BINARY VALUE OF
AN OPTION IF IT WAS A NUMBER, ZERO OTHERWISE.

KWINFO = AN ARRAY THAT RETURNS MISCELLANEOUS INFORMATION AND MUST
BE DIMENSIONED KWINFOC10) IN THE CALLING PROGRAM.
K W I N F O d) IS EQUAL TO THE NUMBER OF CHARACTERS IN OPTBUF
AND KWINFOC2) - KWINFOC10) ARE RESERVED FOR FUTURE USE.

PAGE 47 REV. 2

FUNCTION

CMDLSA WAS DESIGNED TO SIMPLIFY THE PROCESSING OF A PRIMOS TYPE
COMMAND LINE WHILE, AT THE SAME TIME, PROVIDING THE USER WITH A GREAT
DEAL OF FLEXIBILITY IN DEFINING HIS COMMAND ENVIRONMENT.

THIS ROUTINE WILL PARSE A COMMAND LINE, A KEYWORD ENTRY AT A TIME,
AND RETURN INFORMATION ABOUT EACH EACH ENTRY IT ENCOUNTERS. A KEYWORD
ENTRY IS DEFINED AS A -KEYWORD FOLLOWED BY AN OPTION. A DEFAULT
KEYWORD ENTRY IS DEFINED AS AN OPTION THAT IS NOT PRECEDED BY A
-KEYWORD BUT, BY VIRTUE OF ITS POSITION IN THE COMMAND LINE, IMPLIES A
SPECIFIED -KEYWORD (EG. FTN SNARF, WHERE SNARF IMPLIES THE DEFAULT
KEYWORD -INPUT). DEFAULTS MAY ONLY OCCUR AT THE BEGINNING OF A COMMAND
LINE.

CMDLSA RETURNS THE FOLLOWING INFORMATION FOR EACH KFYWORD ENTRY IN
THE COMMAND LINE:

1) INTEGER THAT IDENTIFIES THE -KEYWORD (KWINDX).
2) TEXT OF THE KEYWORD OPTION, IF PRESENT (OPTBUF).
3) OPTION TYPE (OPTION).
A) RESULTS OF NUMERIC CONVERSION, IF OPTION WAS A NUMBER (VALUE).
5) NUMBER OF CHARACTERS IN THE TEXT OF AN OPTION (KWINFOCO).

NOTE THAT CMDLSA DOES NOT PERFORM ANY ACTION OTHER THAN
RETURNING INFORMATION ABOUT THE COMMAND LINE.

THE FOLLOWING IS A LIST OF CONSIDERATIONS THAT SHOULD BE TAKEN
INTO ACCOUNT WHEN DEFINING A COMMAND ENVIRONMENT:

1) A KEYWORD MAY HAVE, AT MOST, ONE OPTION FOLLOWING IT.
2) A KFYWORD MUST BEGIN WITH A *-'.
3) A KEYWORD MAY NOT BE A DECIMAL NUMBER (EG. -99).
4) REGISTER SETTING PARAMETERS ARE NOT RECOGNIZED AS SUCH.
5) DEFAULT KEYWORDS ARE ONLY ALLOWED AT THE BEGINNING OF A

COMMAND LINE. THE FIRST -KEYWORD ENCOUNTERED TURNS OFF
DEFAULT PROCESSING AND ALL REMAINING OPTIONS ON THE COMMAND
LINE MUST BE PRECEDED BY A -KEYWORD (THIS RESTRICTION CAN
BE CIRCUMVENTED BY USING A KEY OF A$NKWL, HOWEVER THE USER
MUST BE AWARE OF THE FACT THAT WHEN DEFAULT PROCESSING IS
IN EFFECT EACH OPTION IS TREATED AS IF IT SrfERE PRECEDED BY
A -KEYWORD) .

6) A KEY OF ASRAWI (OR AN OPTION TYPE OF ASRAWI) WILL TURN ON
THE END OF LINE INDICATOR AND ANY FURTHER ATTEMPTS TO READ
FROM THE CURRENT COMMAND LINE WILL RETURN AN END OF LINE
CONDITION. TO TURN OFF THE END OF LINE INDICATOR CMDLSA
MUST BE CALLED WITH A KEY OF ASRSET OR ASNEXT.

7) A BUFFER LENGTH THAT IS TO SMALL TO CONTAIN THE TEXT OF AN
OPTION WILL CAUSE THAT OPTION TO BE TRUNCATED AND AN ERROR
MESSAGE TO BE DISPLAYED.

8) DEFAULT KEYWORD ENTRIES THAT HAVE A NUMERIC OPTION SHOULD
BE AVOIDED AS PRIMOS MAY IMTERCEPT THEM AS REGISTER
SETTINGS.

9) A NEGATIVE HEXADECIMAL OPTION THAT CONSISTS OF ONLY

PAGE 48 REV. 2

ALPHABETIC CHARACTERS (EG. -FF> WILL ALWAYS BE INTERPRETED

10)
AS
KEY
IND

A -KEY
WORD E
ICIES

WORD.
NTRIES I
ARE CO

N THE KEYW
NSIDERED S

ORD TABLE
YNONYMS.

WITH THE SAME
A KEYWORD KAY

KEYWORD
HAVE ANY

NUMBER OF SYNONYMS, EACH HAVING DIFFERENT OPTION
SPECIFICATIONS. HOWEVER, IF A KEYWORD WITH SYNONYMS IS
ALSO A DEFAULT AND DEFAULT PROCESSING IS IN EFFECT, THE
OPT
A
IN

ION SP
DEFAUL
A SYNO

ECIFICAT
T KEYWO
NYM CHAI

IONS FOR T
RD OPTION
N) .

HE SYNONYMS WILL BE IGNORED (IE.
ALWAYS IMPLIES THE FIRST KEYWORD

11) NULL ENTRIES IN THE COMMAND LINE ARE ONLY PERMITTED FOR
KEYWORDS THAT HAVE AN OPTION STATUS OF ASQPTL, ALL OTHER
NULL ENTRIES WILL BE TREATED AS EITHER A MISSING OPTION OR

12)
AN
CAL
BE

UNRECO
LS TO
AVOID

GNIZED K
CMDLSA A
ED, AS

EYWORD.
ND RDTK$$
CMDLSA USE

ON THE SAME
S RDTK$$ TO

COMMAND
PERFORM

LINE SHOULD
A LOOK-AHEAD

13)
WHE
ALL
OR

N A -K
TEXT

READ A

EYWORD I
IS FORCE
S RAW TE

S ENCOUNTE
D TO UPPER
XT (ASRAWI

RED.
CASE

) .

UNLESS ENCLOSED IN QUOTES

,LL ARGUMENTS ARE INTEGER*? EXCEPT VALUE,
OPTBUF WHOSE TYPE DOES NOT MATTER.

WHICH IS INTEGER*A, AND

APPLIB CALLS:

CNVASA,
TYPESA

CNVB$A, CSUBSA, FILLSA, JSTRSA, MSUBSA, MSTRSA, NLENSA,

PAGE 49 REV. 2

KWLIST FORMAT

THE KWLIST ARRAY CONSISTS OF THREE SECTIONS, THE FIRST SECTION
CONTAINS CONTROL INFORMATION, THE SECOND CONTAINS THE KEYWORD ENTRY
TABLE, AND THE THIRD CONTAINS THE DEFAULT LIST.

CONTROL INFORMATION:

WORD 1 - NUMBER OF KEYWORD ENTRIES IN TABLE, MUST BE .GT.
ZERO.

WORD 2 - MAXIMUM LENGTH OF KEYWORD TEXT IN CHARACTERS, MUST BE
.GE. I AND .LE. 80. ALL KEYWORDS MUST HAVE THE SAME
LENGTH THEREFORE IT MAY BE NECESSARY TO PAD THEM WITH
BLANKS.

KEYWORD TABLE:

WORDS 1 TO N - TEXT OF KEYWORD, THE ACTUAL NUMBER OF CHARACTERS
MUST BE EQUAL TO THE MAXIMUM KEYWORD LENGTH.

WORD N+1 - KEYWORD INDEX, MUST BE .GT. ZERO.
WORD N+? - -MINIMUM NUMBER OF CHARACTERS IN THE KEYWORD TO

MATCH, MUST BE .GE. 2 AND .LE. MAXIMUM KEYWORD
LENGTH. A VALUE THAT IS ZERO OR NEGATIVE CAUSES THE
KEYWORD TO BE IGNORED WHEN THE TABLE IS SEARCHED.
THIS ALLOWS KEYWORD TEXT TO EXIST AS DOCUMENTATION.

WORD N+3 - OPTION STATUS, POSSIBLE VALUES ARE:
ASNONE, NO OPTION MAY FOLLOW KEYWORD
A$OPTL, OPTION MAY OR MAY NOT FOLLOW KEYWORD
A$REQD, OPTION MUST FOLLOW KEYWORD.

WORD N+A - OPTION TYPE, POSSIBLE VALUES ARE:
ASNONE, IF STATUS IS ASNONE
ASDEC, OPTION MUST BE A DECIMAL NUMBER
ASOCT, OPTION MUST BE AN OCTAL NUMBER
ASHEX, OPTION MUST BE A HEXADECIMAL NUMBER
ASNAME, OPTION MUST BE A NAME
ASNDEC, OPTION MAY BE A NAME OR A DECIMAL NUMBER
ASNOCT, OPTION MAY BE A NAME OR AN OCTAL NUMBER
ASNHEX, OPTION MAY BE A NAME OR A HEXADECIMAL NUMBER
(IF THE OPTION CONSISTS OF ALL ALPHABETIC CHARACTERS,
EG. FACE, THAT ALSO CONSTITUTE A VALID HEXADECIMAL
NUMBER THEN IT WILL BE INTERPRETED AS SUCH)
ASRAWI, OPTION IS THE REMAINDER OF THE COMMAND LINE
AFTER THE CURRENT -KEYWORD READ AS RAW TEXT. USE OF
THIS OPTION TYPE WILL TURN ON THE END OF LINE
INDICATOR IN THE SAME MANNER AS A KEY OF ASRAWI.

PAGE 50 REV

DEFAULT LIST:

WORD 1 - NUMBER OF DEFAULT KEYWORDS, MUST BE .GE. ZERO
WORDS 2 TO N - (WHERE N IS EQUAL TO WORD 1) LIST OF KEYWORD

INDICIES PREVIOUSLY DEFINED IN THE KEYWORD ENTRY
TABLE, THAT WILL BE USED WHIN DEFAULT PROCESSING IS IN
EFFECT. A DEFAULT KEYWORD ENTRY MAY NOT HAVE AN
OPTION STATUS OF ASNONE

PAGE 51 REV. 2

ERROR MESSAGES

THE
OCCUR:

FUNCTION VALUE WILL BE FALSE I F ANY OF THE FOLLOWING ERRORS

BAD KEY.
BUFFER LENGTH LESS THAN ZERO.
NAME
UNREC
BAD K

TO LON
OGNIZE
EYWORD

G. (NAME
D KEYWORD
OPTION.

TEXT)
(KEYWORD TEXT)

(OPTION TEXT)
MISSING KEYWORD OPTION.
NO. OF KEYWORD ENTRIES
WAX KEYWORD LENGTH MUST

RUST BE . G T . ZERO.
BE . G E . 2 AND' . L E . 80

1ST C
KEYWO
KEYWO

HARACT
RD MAY
RD IND

ER OF KEYWORD MUST BE •-•. (KEYWORD TEXT)
NOT BE A NUMBER. (KEYWORD TEXT)
EX MUST BE .GT. ZERO. (KEYWORD TEXT)

MIN CHARACTERS TO MATCH MUST BE .LE.
(KEYWORD TEXT)
INVALID OPTION STATUS. (KEYWORD TEXT)

MAX KEYWORD LENGTH.

INVALID OPTION TYPE. (KEYWORD TEXT)
NO. OF DEFAULTS MUST BE .GE. ZERO.
DEFAULT NOT DEFINED IN KEYWORD LIST. (DEFAULT INDEX)
INVALID DEFAULT OPTION STATUS. (KEYWORD TEXT)
MIN CHARACTERS TO MATCH MUST BE .GE. 2. (KEYWORD TEXT)
UNDETERMINED ERROR. (TEXT OF LAST KEYWORD OR OPTION READ)

PAGE 52 REV. 2

SAMPLE PROGRAM

TEST PROGRAM FOR CMDLSA

I M P L I C I T INTEGER*? (A - Z)
INTEGER** VALUE

SIN
DIMENSION B U F F E R (1 0) , K W L I S T (1 2 8) , 1 N F 0 (1 0)

SERT SYSCOM>A$KEYS

DATA KWLIST
* »*ANY TEXT
* '-NDECIMAL
* '-OCTAL
* '-NOCTAL

/11,14,

* '-HEXADECIMAL
* '-NHEXADECIMAL
* '-NAME
* '-MAYBE
* '-NONE
* '-QUIT
* '-TITLE

',1,0,A$REQD,A$DEC,
',2,2,A$0PTL,A$NDEC,
',4,2,A$REGD,A$N0NE,
',4,3,A$0PTL,A$N0CT,
»,5,2,A$REQD,A$HEX,
',6,3,A$0PTL,A$NHEX,
',7,5,A$REGD,A$NAME,
',8,6,A$0PTL,A$NAME,
',9,5,A$N0NE,A$N0NE,
1 ,10,2,A$N0.NE,A$NONE,
',99,2,A$0PTL,A$RAWI,

10

99

* 4 , 1 , 2 , 8 , 7 /

BUFLEN = 20
KEY = A$READ
I F (C M D L $ A (K E Y , K W L I S T , K m N D X , B U F F E R , B U F L E N , T Y P £ , V A L U E , I N F O))

GO TO 15
PRINT 99
FORM AT(/'TRY AGAIN, TURKEY !»)
CALL EXIT

15 IF (KWINDX.EQ.10) CALL EXIT
IF (KWINDX.NE.ASNONE) GO TO 20

20

KEY = ASNEXT
GO TO 10

KEY = A$READ ••;,:%
PRINT 100 BUFFER,KWINDX,TYPE,VALUE, INF0C1)
F 0 R M A T (/ 1 0 A 2 / ' K W I N D X TYPE VALUE CHARS ' / 2 X , 4 (I 3 , 6 X))
GO TO 10

100

END

PAGE 53 REV. 2

5 SUMMARY AND KEYS

BELOW IS A
ROUTINES AND

BRIEF SUMMARY OF THE CALLING SEQUENCES FOR ALL THE APPLIB
A L I S T I N G OF THE F ILE SYSCOM>A$KEYS.

5 . 1 SUMMARY

IN THE SUMMARY THAT FOLLOWS, THE TYPE CODES ARE DEFINED AS

L = LOGICAL
I = INTEGER (SUBJECT TO COMPILE TIME OPTION)
1*2 = INTEGER*2
R = REAL
DP = DOUBLE PRECISION

GROUP NAME TYPE ARGUMENTS

FILE SYSTEM TEMPSA (TYPKEY,NAME,NAMLEN,UN1T)
OPENSA L (OPNKEY+TYPKEY,NAME,NAMLEN,UNIT)
OPNPJA L (MSG,MSGLEN,OPNKEY+TYPKEY,NAME,NAMLEN,

UNIT)
OPNVSA

OPVPSA

(OPNKEY+TYPKEY,NAME,NAMLEN,UNIT,VERKEY,
WTIME,RETRYS)
(MSG,MS6LEN,OPNKEY+TYPKEY,NAME,NAMLEN,
UNIT,VERKEY,WTIME,RETRYS)

CLOSSA L (UNIT)
RWNDSA L (UNIT)
GENDSA L (UNIT)
TRNCSA. L (UNIT)
DELESA L (NAME,NAMLEN)
EXSTSA L (NAME,NAMLEN)
UNITSA L (UNIT)
RPOSSA L (UNIT,POS)
POSN$A L (POSKEY,UNIT,PQS)
TSCNSA L (KEY,UNITS,ENTRY,MAXSIZ,ENTSIZ,MAXLEV,

LEV,CODE)
STRING FILLSA I (NAME,NAMLEN,CHAR)

NLENSA 1*2 (NAME,NAMLEN)
MCHRSA I (TARRAY,TCHAR,FARRAY,FCHAR)
GCHRSA I (FARRAY,FCHAR)
TREESA I (NAME,NAMLEN,FSTART,FLEN)
TYPESA L (KEY,STRING,LENGTH)
MSTRSA I (A,ALEN,B,BLEN)
MSUBSA I (A,ALEN,AFC,ALC,B,BLEN,BFC,BLC)
CSTRSA L (A,ALEN,B,BLEN)
CSUBSA L(A,ALEN,AFC,ALC,B,BLEN,BFC,BLC)
LSTRSA L (A,ALEN,B,BLEN,FCP,LCP)
LSUBSA L (A,ALEN,AFC,ALC,B,BLEN,BFC,BLC,FCP,LCP)
JSTRJA L (KEY,STRING,LENGTH)
YSNOSA L (MSG,MSGLEN,DEFKEY)
RNAfiSA L (MS6,MSGLEN,NAMKEY,NAME,NAMLEN)
RNUMSA L (MSG,MS6LEN,NUMKEY,VALUE)
TIMESA DP (TIME)

USER QUERY

INFORMATION

PAGE 54 REV- 2

CTIMSA ;;'DP: (CPUTIM)
DTIMSA DP
DATESA DP
EDAT$A DP

(DSKTIM)
(DATF.)
(EDATE)

MATHEMATICAL
DOFY$A
RNDISA
RANDSA

DP
DP
DP

(DOFY)
(SEED)
(SEED)

CONVERSION ENCDSA L (ARRAY,WIDTH,DEC,VALUE)
CNVASA L (NUP1KEY,NAME,NAMLEN,VALUE)
CNVBSA I CNUflKEY, VALUE, NAFiE,N AMLEN)

PARSING CNDL$A (KEY,KWL1 ST,KWINDX,GPTBUF,BUFLEN,OPTION,
VALUE,KWINFO)

PAGE 55 REV. 2

5 .2 SYSC0M>A$1CEYS

FUNCTION DECLARATIONS (TABSET 6 17)

LOGICAL CLOS$A,RWND$A,GEND$A,TRNC$A,DELE$A,RPaS$A„POSN$A,
X TEMP$A,OPEN$A,OPNVSA„OPNP$A,OPVP$A,ENCD$A,YSNO$A,

_X RNAM$A„RNUFi$A„TREE$A, rEXST$A,UNIT$A,,CNVA$A,CMDL$A„
X CSUB$A,CSTR$A,TYPE$A,TSCN$A,JSTR$A,LSUB$A / LSTR$A

INTEGER MCHR$A,GCHR$A,FILL$A
INTEGER*? NLFN$A,MSUB$A,MSTR$A,CNVB$A
REAL * 8 D0FY$A,DATE$A,EDAT$A,T IME$A,CTIM$A,DT1MSA,RNDI$A,RAND$A

KEY DECLARATIONS (TABSET 6 1 7)

INTEGER*2 A$READ,A$WRIT,ASRDWR,ASSAMF,A$DAWF,A$NVER,ASVNEW,
X A$OVAP„A$VOLD,A$ABS ,A£REL ,A$DEC ,AOCT ,AHEX ,

_X A$NDEF^A$DNO „ ASDYES „A$FUPP„ ASUPLW, ASR AW I ,
A$NONE,A$OPTL,A$REGD,A$NDEC,A$NOCT,A$NHEX,A$NAME#

ASNUMB,A$NEXT,A$RSET,A$NOVF,A$NK:WL,A$TREE,A$DLAY#

A$NUFD #A$NSEG,A$CUFD,A$DECZ,A$DECU,A$QCTZ,A$HEXZ,
A$RGHT,A$LEFT ,A$BACK

PARAMETER
X
X /**
X /*

** *** I
*/

X /*
X /*
X /*

KEY DEFINITIONS (TABSET 6 11 28 69)
*/
*/
*/

X /*
X /**
X /**

****** ******

******* OPENSA *********************
******* OPNP$A *********************

*/
*/
*/

X /**************
x /*****•********
x /**************

******* OPNVJA *********************
******* OPVPSA *********************
******* TEMPSA *********************

*/
*/
*/

X /* ****** OPNKEY ******
X ASREAD = 1 , /* READ
X ASWRIT = 2, /* WRITE

*/
*/
*/

X ASRDWR = 3, /* READ/WRITE
X /* ****** TYPKEY ******
X ASSAWF = 0, /* OPEN NEW SAM FILE

*/
*/
*/

X ASDAP'F = :20n0, /*
X / * ******
X ASNVER = 1, /*

OPEN NEW DAM FILE
VERKEY ******
NO VERIFICATION

*/
*/
*/

X ASVNEW = 2,
X ASOVAP = 3,
X ASVOLD = 4,

/* VERIFY NEW FILE (OK TO MODIFY)
/* ASVNEW + OVERWRITE/APPEND OPTION
/* VERIFY OLD FILE (DO NOT CREATE NEW)

*/
*/
*/

~*T
*/
*/
-*T
*/

X /*
X /**
X /*

**** ******** ******* RpOSSA *********************
****** POSKEY ******

X ASABS = 1,
X ASREL = 2,

/* ABSOLUTE POSITION
/* RELATIVE POSITION

PAGE S6 REV

X / *
X / *
x / * * * * * * *
X A$NDEF = - 1 , / *

YSNOSA * * * * * * * * * * * * * * * * *
DEFKEY * * * * * *
NO DEFAULT

X
X
X /*

A$DNO =
ASDYFS =

0,
1,

/* DEFAULT = •NO*
DEFAULT = «YES»

X /**
X /**
X /*

**** ****
**** ****

RNUMSA *********************
CNVASA *********************
NUMKEY ******

T7
2,
3,

ASDEC =
A$OCT =
ASHEX =

/* DECIMAL
/* OCTAL
/* HEXADECIMAL

X /*
X /*
X /********************* CNVBSA *********************
X /* ******
X /* ASDEC = 1, /*
X /* ASOCT = 2, /*

NUMKEY ******
DECIMAL,LEFT PADDED WITH BLANKS
OCTAL, LEFT PADDED WITH BLANKS

* >
* ,
*

X /* A$HEX = 3, /* HEXADECIMAL,, LEFT PADDED
X ASDECZ = 4, /* DECIAML, LEFT PADDED WIT
X • ASOCTZ = 5, /* OCTAL, LEFT PADDED WITH

WITH BLANKS *,
H ZEROS *
ZEROS *

X ASHEXZ = 6, /* HEXADECIMAL, LEFT PADDED
X ASDECU = 7, /* UNSIGNED DECIMAL, LEFT P
X /* BLANKS

WITH ZEROS
ADDED WITH

X /*
X /*
X /********************* CMDLSA *********************

X /* ****** KEY ******
X /* ASREAD = 1, /* READ NEXT ENTRY IN COMMAND LINE
X ASNEXT = 2, /* READ FIRST ENTRY IN NEXT LINE
X
X /*
X

ASRSET =
ASRAWI =
ASNKWL =

3,
4,
5,

/* RESET TO BEGINNING OF CO
/* READ REMAINDER OF LINE A
/* ACCEPT NEW KEYWORD LIST

MM AND LINE
S RAW TEXT

X /*
X /*
X /*

ASDEC
ASOCT

1,
2,

/*
/*

OPTYPE
DECIMA
OCTAL

* ****
L OPTI
OPTION

*

ON

*
*,
*

X /*
X /*
X

ASHEX
ASRAWI
ASNDEC

3,

5,

/*
/*
/*

HEXADE
OPTION
NAME 0

CI HAL
IS RA

R DECI

OPTION
W TEXT
MAL OPTION

ASNOCT
ASNHEX
ASNAME

6,
7,
8,

/*
/*
/*

NAME 0
NAME 0
NAME

OCTA
HEXA

L OPTION
DECIMAL

X /*
X
X /*

ASNONE
ASNAME

0,
8,

***** *
/*
/*

OPTION
NO OPT
OPTION

ION PRESENT
IS A NAME

OR NULL OPTION

CDIGIT STRING) X
X
X /*

ASNUMB
ASNOVF

9,
10,

/*
/*

OPTION
NUMERI
STATUS

IS A NUMBER
C OVERFLOW

X /*
X
X

ASNONE
ASOPTL
ASREQD

0,
1,
2,

/* NO OPTION TO FOLLOW KEYW
/* OPTION MAY OR MAY NOT FO
/* OPTION MUST FOLLOW KEYWO

ORD *
LLOW KEYWORD *
RD *

X /*
X /********************* RNAMSA *********************

PAGE 57 REV. 2

X ./* * * * * * * N A MKEY * * * * * * */

X
X
X

ASFUPP
ASUPLW
ASRAWI

1,
2,

/* FORCE UPPER CASE
/* READ UPPER AND LOWER CASE
/* READ REST OF LINE

*/
*/
*/

X /*
X /*
X J********************* TSCNSA *********************

*/
*/
*/

X /*
X
X

ASTREE = 1,
ASNUFD = 2.

****** KEY ******
/* ALL ENTRIES IN A TREE
/* DO NOT SCAN SUBUFDS

*/
*/
*/

ASNSEG
AtCUFD
ASDLAY

3,

_5^

/* DO NOT SCAN SEGDIRS
/* DO NOT SCAN SUBUFDS OR SEGDIRS
/* STAY AT DIRECTORY WHEN GOING UP TREE

* /
* /
* /

ASBACK = 6 , / * BACK UP ONE LEVEL (FOR ERROR H A N D L I N G) * /
*/
*/

X
X /*
X /********************* JSTRSA *********************
X /*
X
X

A$RGHT = X,
ASLEFT = 2

* * * * * * % £ y * * * * * *
/* RIGHT JUSTIFY
/* LEFT JUSTIFY

*/
*/
*/

X /* */
X /* */
X /***/

SUBJECT: CHANGES FOR CX REVISION 16

THE CHANGES TO CX FOR REVISION 16 ARE

A. CX NOW RUNS MULTIPLE JOB STREAMS,
R. CX NOW HANDLES JOB PRIORITIES, AND
C. CPU TIME LIMITS ARE NOW SUPPORTED.

MULTIPLE JOB STREAMS REFERS TO ABILITY OF THE CX TO RUN MORE THAN ONE
JOB AT A TIME, DYNAMICALLY SPAWNING PHANTOMS AS IT NEEDS TO USE THEM.
THERE IS A LIMIT OF 64 SLAVES TO THE CX MASTER, A LIMIT WHICH CANNOT BE
REACHED UNDER PRIMPS IV AND V SINCE THESE OPERATING SYSTEMS DO NOT YET
SUPPORT MORE THAN 63 USERS. HOWEVER, IF CX IS RUNNING ON AN OLD
PARTITION DISK, THE MAXIMIMUM NUMBER OF STREAMS IS 4.

"THE FACILITY TO ASSIGN A CX JOB A PRIORITY LEVEL IS IMPLEMENTED IN TWO
PLACES; THE CX MONITOR ITSELF, AND THE OPERATING SYSTEM. THIS
PRIORITY LEVEL IS THE MAJOR FACTOR IN DETERMINING WHICH CX JOB IS TO BE
EXECUTED NEXT, AND IT ALSO AFFECTS THE SCHEDULING OF THE CX JOB WHILE
IT IS RUNNING.

CX JOBS CAN ALSO HAVE A CPU TIME LIMIT ON HOW LONG THEY CAN RUN~7 A~ND~
WILL BE LOGGED OUT IF AND WHEN THEY REACH THAT LIMIT. THE LIMIT IS IN
CPU SECONDS, AND THEREFORE NOT RELATED TO HOW LONG THE JOB TAKES TO RUN
IN WALL CLOCK TIME. THIS LIMIT IS ENFORCED BY THE PRIMOS OPERATING
SYSTEM.

T~. USER VISIBLE CHANGES

A. MULTIPLE STREAMS

MULTIPLE STREAMS IS A FEATURE THAT IS AUTOMATIC DEPENDING ON HOW THE
SYSTEM MANAGER CONFIGURES CX, THAT IS/ THE USER DOES NOT NEED TO DO
ANYTHING NEW TO USE THE MULTIPLE STREAMS FEATURE. AS A MATTER OF FACT,
THE USER CAN DO RELATIVELY LITTLE TO CONTROL THIS FEATURE, WHICH CAN
PRESENT DANGERS TO USERS THAT HAVE USED CX IN THE PAST.

THE MAJOR PROBLEM ASSOCIATED WITH MULTIPLE STREAMS IS THAT TWO OR MORE
JOBS SUBMITTED BY THE SAME USER MAY NOW RUN AT ONCE * AT REVISION 15,
THIS WAS IMPOSSIBLE. THEREFORE, SOME USERS MAY BE SUBMITTING MULTIPLE
JOBS AT ONCE WHICH CAN_NOT RUN AT THE SAME TIME FOR VARIOUS REASONS,
INCLUDING COMOUTPUTING TO THE SAME FILE, USING THE SAME MAGNETIC TAPE
UNIT TOR FO~R THAT MATTER, PAPER-TAPE, CARD READER UNIT, ETC.), OR
HAVING ONE JOB COMPILE AND THE OTHER JOB LOAD THE BINARY FILES PRODUCED
BY THE FIRST JOB.

USERS WHO HAVE BEEN DOING THIS IN THE PAST MUST NOW USE OTHER METHODS;
FOR INSTANCE, EACH JOB COULD HAVE ITS OWN CQMOUTPUT FILE; OR, WHEN ONE
JOB IS JUST ABOUT FINISHED, IT COULD SUBMIT THE NEXT JOB TO BE RUN;
THIS HAS ADDED ADVANTAGES, ONE OF~WHICH IS THAT IF A JOB ABORTS, NO

PAGE

WORE JOBS IN THE CHAIN WILL RUN (POSSIBLY PREVENTING IMPORTANT FILES
FROM BLOWING UP).

THF USER CAN NOW EASILY DETERMINE THE PROCESS NUMBER THAT HIS JOB(S)
IS(ARE) RUNNING ON, USING ONE OF THE CX STATUS COMMANDS (-A, -SNN, -Q
OR - P) ; THE NUMBER AFTER THE PRIORITY COLUMN (THE LAST COLUMN IN THE
HEADER LINE) IS THE PROCESS NUMBER. IF THERE IS NO NUMBER THERE, THEN
THAT JOB IS EITHER STILL WAITING, NO LONGER RUNNING, OR DROPPED. IN
THE CASE OF THE -SNN OPTION, THE PROCESS NUMBER IS THE NUMBER IN
PARENTHESES AFTER THE PRIORITY LEVEL. AGAIN, IF THERE IS NO NUMBER IN
PARENTHESES, THEN THAT JOB IS NOT EXECUTING.

B. JOB PRIORITIES

INDIVIDUAL JOBS IN THE CX MONITOR NOW HAVE INDIVIDUAL PRIORITIES
ASSIGNED BY THE USER WHO SUBMITTED THE JOBS. THE PRIORITY LEVEL IS
TAKEN INTO ACCOUNT IN TWO PLACES; WHEN CX LOOKS FOR A WAITING JOB TO
RUN, AND WHEN THAT JOB IS ACTUALLY RUN. IN THE FIRST PLACE, ANY JOB
WILL NEVER BE STARTED UP IF THERE IS ANOTHER JOB WAITING TO EXECUTE
WITH A HIGHER PRIORITY; THIS IS TOTALLY INDEPENDENT OF WHEN THE JOBS
WERE SUBMITTED. DATE AND TIME OF SUBMITTAL IS ONLY TAKEN INTO
CONSIDERATION WHEN MULTIPLE JOBS WITH THE SAME PRIORITY LEVEL ARE IN
THE WAIT QUEUE.

ALSO, WHEN THE JOB IS RUN, ITS PRIORITY DETERMINES THE SCHEDULAR QUEUE
THAT THE JOB WILL RUN IN, THE SAME QUEUE THAT IS AFFECTED BY THE
OPERATOR'S CHAP COMMAND. THE ALGORITHM TO DETERMINE WHAT QUEUE IT WILL
BE IN IS COMPLEX; FIRST, IT DEPENDS ON THE QUEUE THAT THE CX MONITOR
IS RUNNING IN. ALL SLAVES SPAWNED BY CX WILL RUN IN THAT QUEUE, NOT
NECESSARILY IN THE DEFAULT QUEUE (1). THIS IS A REV. 16 OPERATING
SYSTEM CHANGE. ALSO, ANY PROCESS CAN LOWER ITS QUEUE LEVEL WITH THE
NEW CHAP LOWER COMMAND. THIS COMMAND IS EXECUTED BY CX SLAVE PHANTOMS
WHEN THEY RUN A USER'S JOB.

TO DETERMINE HOW MUCH A SLAVE WILL LOWER ITS QUEUE, THE USER SUBMITTAL
PROGRAM SUBTRACTS THE CX PRIORITY OF THE JOB FROM A VALUE CALLED THE
"MEDIAN PRIORITY"/ AND PUTS THE RESULTING NUMBER ON THF COMMAND LINE
AFTER THE TEXT "CHAP LOWER "• THE MEDIAN PRIORITY IS A NUMBER WHICH
REPRESENTS THE LOWEST PRIORITY A CX JOB CAN HAVE AND STILL RUN IN THE
SAME QUEUE AS THE CX MONITOR. ANY JOBS WITH A HIGHER PRIORITY THAN THE
MEDIAN PRIORITY WILL ALSO RUN IN THE SAME QUEUE, SINCE THE CHAP LOWER
COMMAND CANNQI RE USED TO RAISE THE QUEUE OF THE JOB EXECUTING THE
COMMAND. IT~ALSO CANNOT LOWER IT BELOW QUEUE 0.

"THE STANDARD VALUE FOR MEDIAN PRIORITY fs T; HOWEVER, IT IS"
PER-INSTALLATION CONFIGURABLE, SO CHECK WITH THE SYSTEM MANAGER TO
DETERMINE WHAT THE MEDIAN PRIORITY IS ON THE SYSTEM.

ANOTHER PER-INSTALLATION CONFIGURABLE VALUE IS THE DEFAULT PRIORITY,
I.E. THE PRIORITY ASSIGNED TO A CX JOB WHEN THE USER HAS NOT SPECIFIED
A VALUE. THE STANDARD IS 3.

PAGE

TO SPECIFY THE PRIORITY LEVEL FOR A JOB, APPEND THE OPTION -PRIORITY
FOLLOWED BY THE PRIORITY LEVEL TO THE COMMAND LINE, I.E. AFTER THE
TREENAME. THE STANDARD LIMITS TO THE PRIORITY LEVEL ARE FROM 0 TO 7;
HOWEVER, THE SYSTEM MANAGER MAY LIMIT IT TO ANYTHING HE DESIRES,
ALTHOUGH CX AS DISTRIBUTED
OR LOWER THAN 0.

WILL NOT SUPPORT ANY VALUES HIGHER THAN 99

AN EXAMPLE COMMAND LINE TO SUBMIT THE CX FILE CX COBOL WITH A PRIORITY
OF 2 IS:

CX CX COBOL -PRIORITY 2

THE OPTION -PRIORITY PAY BE ABBREVIATED TO -PRIO.

57
IF, AS AN EXAMPLE,

THE MEDIAN PRIORITY ON THIS SYSTEM IS
IN GUEUE 3, THE FOLLOWING EVENTS WILL
PROGRAM WILL SUBTRACT THE PRIORITY

75)

AND THE CX MONITOR IS RUNNING
TAKE PLACE; FIRST, THE CX

OF THE JOB (2) FROM THE MEDIAN
PRIORITY
3 AT THE

PRODUCING 3 AS THE RESULT, AND PUT THE COMMAND
TOP OF THE COMMAND FILE WHEN IT COPIES IT OVER TO

CHAP LOWER
THE CX UFD.

THEN, WHEN THE JOB IS RUN, THE CX
AND IS STILL RUNNING IN QUEUE 3
THE CHAP LOWER 3 COMMAND IS EXECUTED,

SLAVE PHANTOM, WHICH WAS
, WILL EXECUTE THAT COMMAND

THE PHANTOM WILL THEN

STARTED UP
FILE. WHEN
BE IN QUEUE

0, THE LOWEST QUEUE ON THE SYSTEM.
EXECUTED ENTIRELY IN QUEUE 0.

THEREFORE, THE USER'S JOB WILL BE

CPU TIME LIMITS

THE CAPABILITY
TIME NOW EXISTS

TO LIMIT PARTICULAR
AT REVISION 16.

CX JOBS TO
THIS LIMIT

CERTAIN AMOUNT OF CPU
IS PASSED ONTO THE

OPERATING SYSTEM, I.E.
WHEN LOOKING FOR A JOB

CX DOES NOT
TO EXECUTE.

TAKE THIS LIMIT INTO CONSIDERATION

THE UNIT OF TIME IS THE CPU SECOND; THAT IS, THE ACTUAL AMOUNT OF TIME
THAT THE JOB HAS BEEN RUNNING IN SECONDS. ON A LIGHTLY LOADED SYSTEM,
30 CPU SECONDS CAN BECOME 1 WALL CLOCK MINUTE. ON A SYSTEM WITH A
HEAVIER LOAD, IT CAN BECOME 3 OR 4 MINUTES.

WHEN THIS LIMIT IS REACHED, THE MESSAGE CPU TIME LIMIT EXCEEDED WILL BE
OUTPUT TO THE COMOUTPUT FILE (IF THERE IS ONE), AND
LOGGED OUT. CX WILL FLAG THIS STATUS AS "ABORTED".

THE PROCESS WILL BE

TO LIMIT A CX JOB, APPEND THE OPTION -CPULItfIT FOLLOWED BY EITHER THE
NUMBER OF CPU SECONDS TO WHICH THE JOB IS TO BE LIMITED, OR THE STRING
"NONE", TO THE COMMAND LINE, I.E.:

CX CX COBOL -CPULIMIT 500

OR

CX CX COBOL -CPULIMIT NONE

THE NUMBER FOLLOWING THE -CPULIM OPTION IS READ AS AN INTEGER*4 NUMBER,

PAGE

BECAUSE THE OPERATING SYSTEM WILL SUPPORT AN INTEGER*4 TIKE LIMIT,

THE OPTIONS -PRIORITY AND -CPULIMIT CAN BOTH BE PRESENT ON THE COMMAND
LINE, IN ANY ORDER, BUT BOTH OF THEM MUST FOLLOW THE TREE NAME. THE
KEYWORD -CPULIMIT MAY BE ABBREVIATED TO -CPULIM. A CPU LIMIT OF 0 IS
ILLEGAL.

NOTE THAT THIS VALUE IS RELATIVE TO THE CURRENT STATUS; IN OTHER
WORDS, IF A PROCESS HAD BEEN LOGGED IN 7 MINUTES AND HAD USED 13 CPU
SECONDS- THEN LIMITED ITS CPU TIME TO 50 SECONDS, THEN THE PROCESS
WOULD BE LOGGED OUT AFTER IT HAD CONSUMED A TOTAL OF 63 CPU SECONDS.
THEREFORE, A CX JOB WITH A LIMIT OF 500 SECONDS WILL GET ALMOST EXACTLY
THAT, AND IT WON'T HAVE TO PAY FOR THE CPU TIME CONSUMED BY THE SLAVE
WHILF IT WAS LOOKING FOR WORK ("SLAVE LABOR").

IF THE -CPULIMIT OPTION IS NOT INCLUDED ON THE CX COMMAND LINE, A
PER-INSTALLATION CONFIGURABLE DEFAULT WILL BE USED. THE STANDARD IS AN
INFINITE AMOUNT OF CPU TIME, I.E. "NONE".

II. SYSTEM MANAGER NOTES

A. MULTIPLE STREAMS

"IN THE CX UFD, CALLED 'CX***', THERE IS A FILE NAMED PK_GO. THIS FILE
IS THE START-UP FILE FOR CX, AND THE REV. 16 OPERATING SYSTEM COMMAND
PHANTOM CX***>PH_GO WILL CAUSE THE CX MONITOR TO START UP.

THE LAST EXECUTABLE LINE OF THE FILE IS THE LINE:

RESUME *MASTER 1/1 2/1

WHERE PARAMETER 1 SPECIFIES THE MINIMUM NUMBER OF PHANTOMS TO RUN, AND
PARAMETER 2 SPECIFIES THE MAXIMUM NUMBER OF PHANTOMS TO START UP. IN
OTHER WORDS, THE ABOVE LINE TELLS THE CX MONITOR THAT IT SHOULD ALWAYS
HAVE ONE PHANTOM (SLAVE) RUNNING, NO MORE, AND NO LESS, WHETHER IT HAS
WORK TO DO OR NOT.

THIS CONFIGURATION WILL CAUSE CX TO ACT IN THE SAME WAY THAT IT DID AT
REV. 15, AND USERS WILL NOT HAVE TO WORRY ABOUT TWO OF THEIR JOBS
RUNNING AT ONCE IN THIS CASE.

HOWEVER, TO DTI t~HE MULTIPLE STREAMS FEATURE, DEFINE THE SECOND
PARAMETER AS THE MAXIMUM NUMBER OF STREAMS THAT CX IS TO RUN,
IRREGARDLESS OF HOW MANY JOBS ARE IN THE QUEUE. DEFINE THE FIRST
PARAMETER AS THE MINIMUM NUMBER OF SLAVES TO HAVE READY FOR JOBS, IN
EFFECT "RESERVING" THOSE PHANTOM SLOTS FOR CX. AN EXAMPLE LINE TO LET
CX RUN UP TO 22 STREAMS AT ONCE BUT RESERVE ONLY 7 IS:

RESUME *MASTER 1/7 2/26

PAGE

NOTE THAT THE PARAMETER DATA MUST BE OCTAL. SUBSEQUENT FEATURE OF
THIS
I.E.

IS THAT CX CAN BE CONFIGURED TO NOT HAVE TO RUN ANY SLAVES AT ALL,

RESUME *MASTER 1/0 2/6

WILL ALLOW 6 STREAMS TO RUN SIMULTANEOUSLY, BUT WHEN THE CX MONITOR HAS
NO WORK TO DO, THE ENTIRE CX SUBSYSTEM WILL RUN ONLY ONE PHANTOM. IN
THE EARLIER EXAMPLE, WHERE IT WAS TOLD TO RUN A MINIMUM OF 7 SLAVES,
THERE WOULD BE A TOTAL OF 8 PROCESSES IN USE BY THE CX SUBSYSTEM (CX
AND THE 7 SLAVES).

IF CX CANNOT START UP AS MANY PHANTOMS AS IT WANTS TO, BECAUSE OF THE
"NO FREE PHANTOM" ERROR, IT WILL NOT CRASH, BUT SIMPLY ACT AS THOUGH IT
HAD ALREADY REACHED THE MAXIMUM CONFIGURED NUMBER OF SLAVES TO RUN.
HOWEVER, IF IT CAN'T START UP THE MINIMUM NUMBER OF PHANTOMS DUE TO
THIS ERROR, IT WILL GRIPE TO THE SYSTEM CONSOLE EVERY 10 MINUTES WITH
THE MESSAGE "MINIMUM PHANTOMS NOT AVAILABLE". IT WILL STILL BE
OPERATIVE, THOUGH (UNLESS, OF COURSE, IT CAN'T GET ANY PHANTOMS AT ALL,
IN WHICH CASE IT IS EFFECTIVELY INOPERATIVE).

CX IS DESIGNED TO RECOVER AFTER A SYSTEM CRASH; IF A CRASH OCCURS, CX
WILL ATTEMPT TO RESTART ANY JOB THAT WAS RUNNING AT THE TIME
SYSTEM IS BROUGHT BACK UP.

WHEN THE

IT IS POSSIBLE, HOWEVER
CRASH; IN THAT CASE
RESTARTING CX. IF THAT

FOR CX TO BE UNABLE TO FUNCTION AFTER A SYSTEM
TRY RUNNING THE PROGRAM *KILL IN CX*** AND

STILL DOESN'T WORK, THEN RUN CX***>*INIT AND
BRING CX BACK UP. ALL JOB DATA WILL BE LOST AFTER RUNNING *INIT.

IF THAT DOESN'T WORK, MAKE SURF THE FOLLOWING FILES EXIST AND LOOK
REASONABLE IN THE CX*** UFD: PH_GO, P_SCAN, AND LOGOUT. THEN MAKE
SURE THAT THE FOLLOWING RUNFILES EXIST IN CX***: *INIT, *KILL,
•MASTER, AND *SLAVE. THEN MAKE SURE THAT THE COMMAND CX -A PRODUCES
THE ERROR MESSAGE "?CAN'T - JOB FILE EMPTY
INDICATING THAT IT IS FUNCTIONING.

OR SOME OTHER MESSAGE

THFN, USE FUTIL TO UFDPROTECT THE ENTIRE
TO CLEAN CX## AND THEN CLEAN PH_#. WHEN
ABLE TO BE BROUGHT UP.

CX*** UFD TO 7
THIS IS DONE,

0, THEN TELL IT
CX SHOULD BE

B. JOB PRIORITIES

THERE ARE SEVERAL VALUES THE SYSTEM MANAGER MUST BE CONCERNED WITH WHEN
IT COMES TO CX PRIORITIES. THESE VALUES ARE:

MEDIAN PRIORITY (STANDARD 3) MEDPRI
DEFAULT PRIORITY (STANDARD 3) PRIO
MAXIMUM PRIORITY (STANDARD 7) MAXPRI
MASTER QUEUE LEVEL (STANDARD 1)
SLAVE QUEUE LEVEL (STANDARD 1)

PAGE

CX WILL NOT SUPPORT A MAXIMUM PRIORITY HIGHER THAN 99, NOR WILL IT
SUPPORT EITHER A MEDIAN PRIORITY OR A DEFAULT PRIORITY THAT IS LESS
THAN ZERO OR GREATER THAN THE MAXIMUM PRIORITY, I.E. IF THE MAXIMUM
PRIORITY IS LEFT STANDARD, THE DEFAULT PRIORITY MUST NOT BE SET TO 8 OR
-1.

THE MASTER QUEUE LEVEL IS THE QUEUE IN WHICH THE CX MONITOR RUNS. THIS
DIRECTLY AFFECTS THE SLAVE QUEUE LEVEL; WHENEVER A SLAVE IS SPAWNED,
IT INHERITS THE QUEUE LEVEL THAT ITS FATHER (THE CX MONITOR) HAD.
HOWEVER, THIS MEANS THAT IF THE CX MONITOR IS SUPPOSED TO BE IN QUEUE 3
FOR INSTANCE, BUT BEFORE THE SYSTEM CONSOLE IS USED TO CHAP IT UP TO 3
IT SPAWNS A PHANTOM OR TWO, ANY PHANTOMS THAT IT SPAWNED WILL REMAIN IN
QUEUE 1 EVEN THOUGH THE CX MONITOR AND ANY NEW PHANTOMS IT SPAWNS WILL
RUN IN QUEUE 3.

THEREFORE, THE CX MONITOR MUST BE CHAPED TO THE DESIRED LEVEL BEFORE IT
SPAWNS ANY PHANTOMS. TO FACILITATE THIS, CX WILL NOT SPAWN ANY
PHANTOMS OR SEARCH THE CX QUEUE FOR 40 SECONDS AFTER IT STARTS UP. THE
CHAP COMMAND CAN BE INCLUDED IN THE COMMAND FILE THAT STARTS CX UP AS
LONG AS THE PROCESS NUMBER THAT CX WILL RUN IN REMAINS CONSTANT AND IS
KNOWN.

"THE DEFAULT PRIORITY IS THE PRIORITY ASSIGNED TO A CX JOB IF THE USER
DOES NOT EXPLICITLY ASSIGN ONE HIMSELF. THIS SHOULD GENERALLY BE THE
MIDDLE-OF-THE-ROAD PRIORITY FOR YOUR SYSTEM.

THE MEDIAN PRIORITY REPRESENTS THE LOWEST PRIORITY A JOB CAN HAVE TO
RUN IN THE SAME QUEUE THAT THE CX MONITOR HAS. TO DETERMINE THIS
NUMBER, FIRST YOU MUST DECIDE THE FOLLOWING: WHAT RUN QUEUE A CX JOB
SHOULD RUN IN- IF THE USER DID NOT SPECIFY ANY PRIORITY. CALL THIS
NUMBER THE DEFAULT QUEUE LEVEL. THEN YOU MUST DECIDE THE HIGHEST QUEUE
LEVEL YOU WILL LET ANY CX JOB RUN IN. CALL THIS THE MAXIMUM QUEUE
LEVEL.

SUBTRACT THE DEFAULT QUEUE LEVEL FROM THE MAXIMUM QUEUE LEVEL, THEN ADD
THE DEFAULT PRIORITY, AND THE RESULT IS THE MEDIAN PRIORITY THAT YOU
WANT. MODIFY MEDPRI, PRIO AND MAXPRI IN THE CX USER PROGRAM AND
RE-COMPILE. THEN, CHAP THE CX MONITOR UP TO THE MAXIMUM QUEUE LEVEL
WHENEVER YOU BRING IT UP, AND THE SYSTEM IS IN PLACE. EXAMPLE:

T H I HIGHEST QUEUE LEVEL YOU EVER WANT A CX JOB TO HAVE IS 3. HOWEVER,
IF THE USER DOESN'T SPECIFY A PRIORITY, YOU WANT HIS JOB TO RUN AT
QUEUE LEVEL 0. YOU HAVE ALSO DECIDED THAT THE DEFAULT PRIORITY SHOULD
BE 2. SO YOU SUBTRACT 0 FROM 3 (HIGHEST QUEUE LEVEL) AND THEN ADD THE
DEFAULT PRIORITY (2) TO PRODUCE A MEDIAN PRIORITY OF 5. SO YOU MAKE
THE APPROPRIATE CHANGES TO THE USER PROGRAM IN CX AND RECOMPILE THE
SUBSYSTEM.

PRIORITIES THAT ARE GIVEN TO JOBS THAT ARE HIGHER THAN THE MEDIAN
PRIORITY WILL RUN IN THE SAME QUEUE AS IF THEY WERE GIVEN THE MEDIAN
PRIORITY, AND ANY JOB WITH A PRIORITY LESS THAN THE MEDIAN PRIORITY
MINUS THE MAXIMUM QUEUE LEVEL WILL RUN IN THE SAME QUEUE AS IT WOULD
HAVE IF IT WERE GIVEN THAT VALUE. THE DIFFERENCE IS THAT CX USES
PRIORITIES AS THE MAJOR FACTOR IN DECIDING WHICH JOBS TO RUN NEXT;

PAGE

THEREFORE, A JOB WITH PRIORITY 7 WILL ALWAYS RUN BEFORE A JOB WITH
PRIORITY 6, EVEN THOUGH THE
BOTH RUN IN THE SAME QUEUE-

MEDIAN PRIORITY NAY BE AND THEY WOULD

C. CPU TIME LIMITS

THE ONLY VALUE YOU NEED TO BE CONCERNED ABOUT AS A SYSTEM MANAGER HERE
IS THE DEFAULT CPU TIME LIMIT. THE STANDARD IS NONE (I.E. INFINITE
AMOUNT OF CPU TIME FOR A CX JOB), BUT YOU CAN SET IT TO ANY VALUE YOU
WANT. SIMPLY CHANGE THE PARAMETER CPULIM IN THE DATA STATEMENT IN THE
CX USER PROGRAM, RECOMPILE AND INSTALL IN YOUR SYSTEM. THE PARAMETER
CPULIM IS AN INTEGER*4 PARAMETER, AND IT REPRESENTS THE NUMBER OF CPU
SECONDS THE JOB WILL BE ALLOWED TO HAVE. NOTE THAT USERS MAY
CIRCUMVENT THIS DEFAULT ENTIRELY BY ALWAYS SUBMITTING JOBS WITH -CPULIM
NONE ON THE COMMAND LINE.

THERE IS A WAY FOR YOU TO CAUSE ALL JOBS LOGGING IN TO HAVE CERTAIN
CPU TIME LIMIT OR CONNECT TIME LIMIT THAT CAN'T BE GOTTEN AROUND;
CHECK THE DOCUMENTATION ON THE NEW LIMITS CALL TO PRIMOS, AND CONSIDER
PUTTING IT IN YOUR EXTERNAL LOGIN PROGRAM.

IF A CX JOB DOES
"PHANTOM TTY REQUEST'

RUN OUT OF TIME, IT WILL BE LOGGED OUT, BUT THE
MESSAGE WON'T BE PRINTED ON THE SYSTEM CONSOLE.

HOWEVER, CX WILL DETECT THAT THF JOB HAS TERMINATED WITHOUT A CX -E AND
NOTIFY THE SYSTEM CONSOLE, FLAGGING "ABORTED" STATUS ON THE JOB.

TRIVIA

THERE ARE
CONSOLE:

FIVE DIFFERENT MESSAGES THAT CX CAN SEND TO THE SYSTEM

CX CX MONITOR, REV 16.0
CX MINIMUM PHANTOMS NOT AVAILABLE
CX EXECUTING FILENM FOR USER USRNAM (NN)
CX JOB FILENM USER USRNAM (NN) COMPLETED
CX JOB FILENM USER USRNAM (NN) ABORTED.

THE FIRST MESSAGE IS SENT BY THE MASTER PROGRAM
STARTS UP, AFTER THE 40-SECOND DELAY. THE

WHEN THE CX
SECOND MESSAGE

MONITOR
IS SENT

WHENEVER CX IS UNABLE TO HAVE THE MINIMUM NUMBER OF SLAVES SPAWNED,
ALSO BY THE MASTER PROGRAM. THE THIRD IS SENT BY THE MASTER PROGRAM
WHENEVER IT STARTS UP A CX JOB; FILENM REFERS TO THE COMMAND FILE NAME
(I.E. CX##NN), USRNAM REFERS TO THE USERNAME OF THE SUBMITTER, AND NN
REFERS TO THE PROCESS NUMBER OF THE SLAVE THAT IS TO EXECUTE THE JOB.
THE FOURTH AND FIFTH MESSAGES ARE VARIATIONS ON THE THIRD, EXCEPT THAT
THE FOURTH IS SENT BY THE CX USER PROGRAM WHEN IT EXECUTES A CX -E.

SOME BUG FIXES INCLUDE FIXING THE PROBLEM
(FILE

THAT OCCURED WHEN TWO USERS
TRIED TO SUBMIT A CX JOB AT ONCE
USER THAT WOULD HAVE GOTTEN THE FILE

IN USE TO ONE
IN USE MESSAGE

OF THEM),
JUST GETS

NOW THE
A HIGHER

PAGE

CX QUEUE NUMBER, ALSO, CX NOW ATTEMPTS TO RETURN THE USER TO HIS HOME
UFD IN MORE CASES THAT IT CAN. HOWEVER, MOST OF THE BUGS IN CX
REVISION' 15 HAVE BEEN FIXED BY REWRITING THE CODE IN THE MASTER AND
SLAVE PROGRAMS TO ALLOW FOR MULTIPLE STREAMS; AN EXAMPLE IS THE "BUG"
THAT IF A CX SLAVE WENT DOWN, THE MASTER WOULD NEVER NOTICE IT, BUT
WOULD KEEP SENDING JOBS TO IT AND FLAGGING THEM AS "ABORTED" 30 SECONDS
LATER. ALSO, IT WOULD TRY TO DELETE THE CXfltfNN FILE 30 SECONDS AFTER
IT WROTF THE BOOTSTRAP FILE FOR THE SLAVE TO PICK UP (NOW CALLED
PH_#NN, AT REV. 15 IT WAS C_PHFL), AND SINCE THE SLAVE SLEPT 30
SECONDS BETWEEN CHECKING FOR THE BOOTSTRAP FILE, SOMETIMES THE MASTER
PROGRAM WOULD DELETE THE CX00NN FILE BEFORE THE SLAVE EVER SAW IT.

III. CX INTERNALS

"THE CX USER PROGRAM RESIDES IN CMDNCO; HOWEVER, EVERYTHING ELSE THAT
CX USES RESIDES IN CX***. THE FILES THAT ARE NEEDED TO RUN THE CX
SUBSYSTEM ARE :

•MASTER - THE CX MASTER PROGRAM
*SLAVE - THE CX SLAVE PROGRAM
*INIT - THE CX SUBSYSTEM INITIALIZER
*KILL - THE CX SLAVE ACTIVITY FILE INITIALIZER
PH GO - THE COMMAND FILE TO START UP THE CX SUBSYSTEM
P_SCAN - THE COMMAND FILE USED BY *MASTER TO SPAWN SLAVES
LOGOUT - THE COMMAND FILE INVOKED BY THE USER PROGRAM TO DO CX -E

RUNNING *INIT WILL PRODUCE TWO MORE FILES THAT MUST STAY INTACT ONCE
THEY ARE CREATED:

J06S*T - CONTAINS INFORMATION ON ALL USER'S JOBS
USER//S - CONTAINS INFORMATION ON AL SLAVE ACTIVITY

ALSO, WHENEVER A USER SUBMITS A CX JOB, IT IS GIVEN THE NAME:

CXflflNN - WHERE NN IS THE CX JOB NUMBER OF THAT JOB

AND WHEN CX DECIDES TO RUN IT, IT CREATES A FILE CALLED:

PH_#NN - WHERE NN IS THE PROCESS NUMBER OF THE TARGET SLAVE

WHEN THE SLAVE (WHICH WAS SPAWNED OFF OF P_SCAN WHICH RAN *SLAVE) SEES
ITS PH_#NN FILE, IT COMINPUTS INTO IT, AND THAT FILE COMINPUTS INTO THE
CX##NN FILE THAT IS TO BE RUN. THAT FILE, WHICH WAS GENERATED BY THE
CX USER PROGRAM, STARTS THE SLAVE BACK UP AGAIN SO IT CAN DELETE THE
PH_#NN FTL~E (WHICH WTS GENERATED FY THE MASTER PROGRAM). THEN THE
SLAVE EXITS FOR THE LAST TIME, LETTING CKfttfHH TAKE CONTROL.

WHAT CX##NN THEN DOES IS LIKIT THE JOB'S CPU TIME AND LOWER I~TS QUEUE
LEVEL APPROPRIATELY, THEN IT DOES WHAT THE USER'S COMMAND FILE WAS
GOING TO DO, EXCEPT THAT IF IT ABORTS COR LEAVES THE CXflfrNN FILE FOR
ANY OTHER REASON SUCH AS A CLOSE ALL OR COMINPUT S0ME_0THER_F1LE ON THE
SAME UNIT), THE MASTER IS THEN ABLE TO DELETE CX##NN AND FLAG "ABORTED"

PAGE

STATUS ON THE JOB. IF THE COMMAND FILE IS RUN TO COMPLETION, CX -E IS
EXECUTED, AND THE USER PROGRAM DELETES THE CXITNTN FILE, FLAGS
"COMPLETED" STATUS ON THE JOB, AND THEN COMTNPUTS TO CX***>LOGOUT.

WHILE THl SLAVES A~RE LOOKING FOR WORK (IN THE FORM OF PH_#NN), THEY
CONSTANTLY (EVERY 30 SECONDS) UPDATE AND LOOK AT AN ENTRY SPECIFIC TO
THEMSELVES IN THE USERflS FILE. IF THEIR ENTRY IS ZERO, THEY C0M1NPUT
INTO CX***>LOGOUT. THE WHOLE FILE IS ZEROED BY *1NIT OR
RUNNING EITHER OF THOSE PROGRAMS CAUSES ALL SLAVES TO LOG
OUT. HOWEVFR, IF THE MASTER PROGRAM IS RUNNING, IT WILL LOG

*KILL, SO
THEMSELVES
SOME MORE

BACK IN AGAIN (UNLESS THE MINIMUM NUMBER OF SLAVES IS SET TO ZERO OR IT
CAN'T SPAWN THE SLAVES FOR SOME OTHER REASON). *KILL WILL NOT WIPE OUT
THE JOB DATA FILE, HOWEVER, AND IS THFREFORE PREFERRED.

THE M
SLAVE

ASTER
SPAW

PROGR
NING,

AM HA
AND

NDLES
ALL

ALL OF
OF THE

THE S
CRAS

CHEDULING
H RECOVERY

OF CX
PROCE

JOBS,
DURES,

ALL 0
INCL

F THE
UDING

RECOV
IT DO
TO A

ERING
|S_NOI
~CX

FROM
HAND

JOB'S

ITSELF BEING LOGGED OUT, LEAVING OTHER SLAVES RUNNING.
LE THE CPU LIMIT PARAMETER, AND THE ONLY TIME IT REFERS

PRIORITY IS WHEN IT IS DECIDING WHICH JOB TO SCHEDULE
NEXT.
A JOB
THAT

THER
IS SU
JOB

FFORE
BM1TT
ARE C

. IF
ED SO
HANGE

THE CX
THAT

D, THE

QUEUE
THE PRI
ONLY E

CONTR
ORITY
FFECT

OL FILE JO
OR CPU TI
THAT CHAN

BS*T I
ME LIM
GE WIL

S CHAN
IT PAR
L HAVE

GED
AMETE
IS I

E PRI
REMA

THAT

AFTER
RS OF
F THE
ORITY
IN AS
JOB.

CX PRIORITY IS DIFFERENT WHEN THE CX MONITOR LOOK
AT WHICH THE JOB WILL RUN, AND THE CPU LIMIT OF T
BEFORE, SINCE THAT INFORMATION IS IN THE CX COMMA

S AT I
HE JOB
ND FILE FOR

T. TH
, WILL

AS MENTIONED EARLIER, EACH SLAVE UPDATES ITS ENTRY IN USER#S EVERY 30
SECONDS; WHAT IT UPDATES IT WITH IS THE TIME OF DAY IN MINUTES PLUS 1
(SO THAT ZERO WILL NOT OCCUR).

IF THE MASTER SEES A SLAVE REGISTERED IN THE USERflS FILE THAT HAS NOT
UPDATED ITS ENTRY IN THE LAST 4 MINUTES, IT WILL NULLIFY THAT ENTRY.
IF A SLAVE EVER FINDS ITS ENTRY NULLIFIED AFTER IT WRITES IT INTO THE
USER0S FILE WHEN IT FIRST RUNS, IT WILL LOG OUT WITH NO COMPLAINTS
(I.E. COMINPUTINTO CX***>LOGOUT).
THE MASTER PROGRAM TO BE IN CLOSE AND

THIS METHOD GENERALLY GUARANTEES
CONSTANT TOUCH WITH ITS SLAVES-

WHEN A CX -E IS EXECUTED, AND THE USER PROGRAM FINDS THAT ITS ENTRY IN
USER#S IS ZEROED (AS A RESULT OF RUNNING *INIT OR *KILL), IT WILL BOMB
OUT WITH A BAD USERffS ERROR, BUT THE STATUS OF THE JOB IT WAS RUNNING
WILL BE "COMPLETED", BECAUSE THE JOB WAS, AFTER ALL, COMPLETE.

ON NEW PARTITION DISKS, THE READ-WRITE LOCK ON JQ8S*T WILL BE 2, AS SET
BY *INIT, SO THAT USERS WON'T HAVE TO WAIT TO DO A CX -A OR SOME OTHER
STATUS COMMAND. WHEN THE MASTER PROGRAM RUNS, IT SETS THE READ-WRITE
LOCK ON USERflS TO 3 SO THAT MANY SLAVES WON'T END UP FIGHTING FOR THE
RIGHT TO WRITE THE FILE EVERY 30 SECONDS; IT WAS DISCOVERED THAT AFTER
A CERTAIN NUMBER OF SLAVES WERE RUNNING, SOME WOULD NOT GET A CHANCE TO
WRITE THE USERffS FILE FOR AS MUCH AS 5 MINUTES IF ITS READ-WRITE LOCK
WAS 2 OR LESS.

IF THE MASTER PROGRAM CAN'T SET THE READ-WRITE LOCK DUE TO AN OLD
PARTITION
TO A.

ERROR (ESOLDP), IT WILL LIMIT THE MAXIMUM NUMBER OF STREAMS

PAGE 10

IV. COMPATIBILITY

ON THE USER LEVEL, CX REVISION 16 IS ENTIRELY COMPATIBLE WITH CX
REVISION 15 ASSUMING THAT CERTAIN DEFAULT VALUES ARE LEFT STANDARD.
HOWEVER,
REVISION
THE DATA

NO CX REVISION 15 PROGRAM IS IN ANY WAY
16 DATA FILES, OR VICE VERSA, DUE TO THE
FILES JOBS*T AND USERflS, ESPECIALLY SINCE

COMPATIBLE WITH CX
CHANGED STRUCTURE OF
AT REVISION 15 THESE

FILES WERE CALLED
CX AT ONCE.

JOBS* AND USERff, SO IT IS IMPORTANT TO INSTALL ALL OF

THE COMMAND FILES AND PROGRAMS ARE DISTRIBUTED IN SUCH A WAY THAT THE
ACTIONS TAKEN WILL BE COMPATIBLE; FOR INSTANCE, THE WASTER PROGRAM IS
TOLD TO RUN EXACTLY ONE SLAVE IN THE RELEASED PH GO FILE, JUST AS
REVISION .15 DID. ALSO, CPU LIMITS ARE DEFAULTED TO INFINITE AS A
STANDARD, AND THE VALUES MAXPRI AND MEDPRI ARE BOTH SET TO 3, CAUSING
CX JOBS TO DEFAULT TO THE SAME QUEUE LEVEL THAT THEY WERE RUNNING AT AT
REVISION 15

SUBJECT CHANGES FOR SPOOL REVISION 16

THE CHANGES TO SPOOL FOR REVISION 16 ARE MINOR THEY CONSIST OF ONE
BUG FIX IN THE SPOOLER PHANTOM AND A CHANGE TO THE LIBRARY SUBROUTINES
AND SPOOL TO ALLOW FOR THE REV. 16 OPERATING SYSTEM ABILITY TO USE 63
UNITS INSTEAD OF JUST 16,

THE BUG FIX THAT WENT INTO THE SPOOLER PHANTOM IS THAT IT NO LONGER
BOMBS OUT WITH PRO NOT ASSIGNED WHEN IT ATTEMPTS TO PRINT AN EMPTY FILE
ON A CENTRONICS PRINTER OR A PLOTTER.

THE -TUNIT AND -FUNIT OPTIONS IN THE SPOOL PROGRAM NOW
NUMBERS RANGING FROM 1 TO 63 INSTEAD OF LIMITING THEM
16. ALSO, THE SPOOLS SUBROUTINE (IN BOTH R-MGDE AND
ACCEPT UNIT NUMBER SPECIFICATIONS IN THE RANGE FROM 1

ACCEPT UNIT
TO BETWEEN 1 AND
V-MODE) WILL ALSO
TO 63 IN THE INFO

ARRAY

IF THIS INCREASED RANGE IS ATTEMPTED ON AN OPERATING SYSTEM EARLIER
THAN REV. 16, IT WILL CAUSE A BAD UNIT (ESBUNT) ERROR TO OCCUR.. THTS"
WILL ONLY OCCUR WHEN THE LIBRARY ROUTINES ARE GIVEN UNIT NUMBERS
GREATER THAN 16.

UBJECT: PRMPC FOR RELEASE 16.0.

UG FIXES:
PRMPC NO LONGER REQUIRES ITS NRD VARIABLE LINE COUNTER.
TAR #20193. 'vMfYV v 3 ^ ; :\

PRIMOS IV, REVISION 16.2 PAGE

ABSTRACT

REVISION 16
EXTENSIONS.
TRE EN AMES TO

OF PRIMOS IV HAS SEVERAL NEW FEATURES AND
AMONG THESE ARE THE INTRODUCTION OF
INTERNAL COMMANDS, 63 FILE UNITS PER USER,

THE ABILITY TO DYNAMICALLY OBTAIN A FILE UNIT, AND
IMPROVEMENTS IN THE AREAS OF PROTECTION. SEVERAL
PROBLEMS HAVE BEEN FIXED, AND THE TOOLS FOR BUILDING
PRIMOS HAVE BEEN • SIMPLIFIED AND IMPROVED. THIS
DOCUMENT DESCRIBES THESE AND OTHER TOPICS RELATED TO
REVISION 16 OF PRIMOS.

REVISION 16.2 CONTAINS SUBSTANTIAL NEW FUNCTIONALITY AS
WELL AS ERROR CORRECTIONS. THE NETWORK PRIMITIVES HAVE
BEEN CHANGED TO USE THE X.25 PROTOCOL. COMPUTERS USING
REV 16.2 PRIMOS CANNOT BE NETWORKED WITH MACHINES USING
EARLIER REVISIONS. DOCUMENTATION OF THE NETWORK
CHANGES IS IN OTHER DOCUMENTS.

PRIM OS IV, REVISION 16.? PAGE

1-CONFIGUR AIIQ N_ AN D.QPER ATIO NAL_MOr2l£I£^IIONS

lil_byiLDING_PRIMOS_iy

THE BASIC PROCEDURES FOR BUILDING PRIMOS IV HAVE BEEN SIMPLIFIED.
THE ONLY COMMAND FILE WHICH MUST BE RUN TO BUILD PRIMOS IS C_ALL.
IF IT IS NOT NECESSARY TO RECOMPILE (OR REASSEMBLE) ALL SOURCE
MODULES, SIMPLY RUN THE COMMAND FILE C_LOAD.

THE RUN FILES OF PRIMPS ARE LEFT IN THE UFD NAMED PRIAOO. THE
COMMAND FILE C COPY (ALSO IN PRIAOO) IS PROVIDED TO COPY THE RUN
FILES INTO PRIRUN. PRIMOS IS NOW STARTED UP BY ATTACHING TO
PRIRUN, AND TYPING R PRIMOS.

THE COMMAND FILE C_COLD HAS BEEN SIMPLIFIED TO USE A NEW VERSION
OF MAPGEN. SEE SECTION 8 FOR COMPLETE DETAILS ON MAPGEN.

RUNNING C LOAD WILL RESULT IN THE CREATION OF A NEW PRXXXX FILE
— PROOU. ALL DATABASES WHICH ARE INVOLVED WITH VIRTUAL MEMORY
PAGING AMD SEGMENTATION, THE TAPE DUMP PROGRAM, THE CRASH
REGISTER SAVE AREA, AND SOME UTILITY CODE USED BY THE PAGING
SYSTEM ARE CONTAINED IN SEGMENT 14. (FOR COMPLETE DETAILS ON
SEGMENT 14, SEE SECTION 9.2.)

IMPORIANI_NOIE: AT REVISION 16 OF PRIMOS, THE FORTRAN, KIDA
(ALSO KNOWN AS MIDAS), COBOL, AND FORMS
LIBRARIFS, ED (IN CMDNCO), AND THE UII PACKAGE
ARE SHARED BY DEFAULT.

lilil_C_PRMO_I£MPLAI£

THE FOLLOWING IS A TEMPLATE THAT CAN BE USED BY A SITE TO CREATE
THE COMMAND FILE C PRMO. C_PRMO IS THE COMMAND FILE THAT LIVES
IN CMDNCO (OF LOGICAL DISK 0) , AND IS USED TO BRING UP REVISION
16 OF PRIMOS.

THE TEMPLATE WHICH APPEARS BELOW IS INCOMPLEJE, AND IS COMPLETED
ON A PER SITE BASIS. FOR CONVENIENCE, A COPY OF THIS TEMPLATE
CALLED C PRMO.TEMPLATE IS IN THE UFD PRIRUN. ONCE THE CHANGES
HAVE BEEN MADE TO C„PRMO .TEMPLATE, SIMPLY FUTIL IT TO CMDNCO OF
LOGICAL DISK 0 AS C_PRMO.

THF INFORMATION THAT MUST_BE_SUPPLIED IN THIS FILE IS AS FOLLOWS:

1) THE NAME OF THE CONFIG DATA FILE. THIS FILE SHOULD
RE NAMED CONFIG (THE DEFACTO PRIME STANDARD NAME FOR
THIS FILE).

?) THE LOCAL DISK(S) TO BE ADDED WHEN PRIMOS IS STARTED
UP. (SOME SITES MAY NEED TO SPECIFY MORE THAN ONE
ADDISK COMMAND IN THIS FILE.)

PRIMOS IV, REVISION 16.2 PAGE

3) THE AMLC LINES AND THE SPEED AT WHICH THEY ARE TO BE
SET TO WHEN PRIMOS COMES UP. (SOME SITES MAY NEED
TO SPECIFY MORE THAN ONE AMLC COMMAND IN THIS FILE.)

IN ADDITION/. A SITE SHOULD INCLUDE (AT THE END OF THIS FILE) ANY"
COMMANDS NECCESSARY TO BRING UP ANY SEPARATELY PRICED (OR OTHER)
SOFTWARE WHEN PRIMOS IS BROUGHT UP (E.G. DBMS, NETWORKS, E T C) ,

CONF
ADDI

16 -DA
SK

TA /* SPECIFY CONFIG FILE AFTER -DATA
/* SPECIFY LOCAL DISKS TO BE ADDED

AMLC
OPR
SHAR

TTY

SYSTEM>ED2Q00 2000

/• SPECIFY AMLC LINES
/* SHARE REQUIRES OPR 1
/* SHARE THE EDITOR - ED

SHAR
SHAR
SHAR

E SYST
E SYST
E SYST

EM>UI2000
EM>S2014A
EK>S201AB

2000 /*
2014 700/*
2014 700

SHARE
SHARE

THE UII
FORTRAN

PACKEAGE
LIBRARY

R SY
SHAR
SHAR

STEM>S
E SYST
E SYST

4000
EM>K2014A
EM>K2014B

2014 700/* SHARE MIDAS LIBRARY
2014 700

R SY
SHAR
SHAR

STEM>K
E SYST
E SYST

4000
EM>C2D14A
EM>C2014B

2014 700/* SHARE COBOL LIBRARY
2014 700

R SY
SHAR
SHAR

STEM>C
E SYST
E SYST

40 00
EM>F2014A
EM>F2014B

2014 700/* SHARE FORMS LIBRARY
2014 700

R SYSTEM>F4C00
SHARE 2014
OPR 0
PH C
PH S
A CM

x***>p
POOLQ>
DNCO

H_GO
PH PRO

/* START 'CX' MONITOR
/* START SPOOLER PHANTOM

/*
CO

ET
TY

THE DATE AND TIME **********

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PAGE

li2_SINGLE_VERSI0N_PBlM0S_IV

THE PR1MOS IV OPERATING SYSTEM HAS BEEN MODIFIED TO ALLOW A
SINGLE VERSION OF THE SYSTEM TO BE CONFIGURABLE AT COLD-START TO
RUN PETWFEN 1 AND 64 USERS, THIS NEW SYSTEM OBSOLETES THE 64
USER SYSTEM, THE 16 USER SYSTEM, AND THE LARGE ADDRESS SPACE 16
USER SYSTEM. IN THE NEW SINGLE VERSION SYSTEM, EACH USER MAY BE
CONFIGURED TO HAVE ACCESS TO 32 M-BYTES (256 SEGMENTS) OF VIRTUAL
ADDRESS SPACE, WITH A LIMIT OF 40 M-BYTES (320) SEGMENTS OF
VIRTUAL ADDRESS SPACE FOR ALL USERS COMBINED. CONFIG DIRECTIVES
ARE USED TO SPECIFY THE NUMBER OF USERS TO BE CONFIGURED, THE
NUMBER OF SEGMENTS TO ALLOW EACH USER TO ACCESS, AND
NUMBER OF USER SEGMENTS AVAILABLE IN THE SYSTEM.

THE TOTAL

THE TOTAL NUMBER OF USERS TO BE CONFIGURED IS SPECIFIED BY THREE
CONFIG DIRECTIVES: NTUSR (NUMBER OF TERMINAL USERS), NPUSR
(NUMBER OF PHANTOM USERS), AND NRUSR (NUMBER OF REMOTE USERS).
THE SUM OF THESE THREE VALUES MUST_NOT EXCEED 64.

THE NUMBER OF SEGMENTS AVAILABLE TO EACH USER IS SPECIFIED BY A
NEW CONFIG DIRECTIVE, NUSEG. (NEW CONFIG DIRECTIVES ARE
DESCRIBED IN SECTION 7.) THIS DIRECTIVE IS USED TO SET THE SIZE
OF EACH USER'S DESCRIPTOR TABLE FOR DTAR2, AND THUS, SPECIFIES
THE NUMBER OF SEGMENTS EACH USER CAN REFERENCE. HOWEVER, THE
SYSTEM HAS SPACE FOR A MAXIMUM OF 4096 SDW'S FOR ALL USERS.
THEREFORE, THE USERS*NUSEG PRODUCT CANNOT EXCEED 4096,

THE NSEG DIRECTIVE SPECIFIES THE
ALLOCATED FOR USE BY ALL USERS. IT

NUMBER OF SEGMENTS TO BE
SETS THE SIZE OF THE AREA TO

BE USED BY THE SYSTEM FOR PAGE MAPS. THERE MAY BE FEWER PAGE
MAPS AVAILABLE THAN THE NUMBER OF POSSIBLE USER SEGMENTS. THUS,
ALTHOUGH A 64 USER SYSTEM CAN ALLOW 64 POSSIBLE SEGMENTS TO BE
ADDRESSED BY EACH USER, THERE IS A LIMIT OF NSE6 SEGMENTS WHICH
CAN ACTUALLY BE IN USE BY ALL USERS AT ANY GIVEN TIME. THE
SYSTEM ALLOCATES SPACE FOR A MAXIMUM OF 320 PAGE MAPS. THUS,
NSE6 CANNOT EXCEED 320.

THE FOLLOWING TABLE SHOWS THE CORRESPONDENCE. BETWEEN THE PREVIOUS
VERSIONS OF PRIMOS IV
SINGLE VERSION SYSTEM

AND THE VALUES TO BE USED WITH
TO GET THE SAME CONFIGURATION:

THE NEW

VERSION NSEG NUSEG

64 192 32 DEFAULT
16
16L

144
32 0

3
256

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PAGE

l±l_^yMBER_OF_SE&^^

THE NUMBER OF SEGMENTS REQUIRED BY PRIMOS IS GIVEN BY:

NSEG = N + 10 + USERSEGS

WHERE N IS THE TOTAL NUMBER OF CONFIGURED USERS AND USERSEGS IS
THE TOTAL NUMBER OF SEGMENTS TO BE AVAILABLE TO USERS, IF IT IS
DESIRED TO LIMIT NSEG TO A NUMBER LESS THAN 192,, 144, OR 320 (TO
CONSERVE PAGING SPACE, FOR EXAMPLE), THE NSEG, PA6DEV, AND ALTDEV
CONFIGURATION DIRECTIVES CAN BE USED (SEE SECTION 7) . IF NSEG IS
NOT MODIFIED, USERSEGS DEFAULTS AS FOLLOWS

USERSEGS = 118 = (192 - 64 - 10.)

GIVEN USERSEGS FROM THE ABOVE, THE PAGING DISK SPACE REQUIREMENTS
ARE GIVEN BY:

RECORDS - (64*USERSEGS + 8*N + 280) * REC ORDS/PAGE

WHERE N IS AGAIN THE TOTAL NUMBER OF CONFIGURED USERS.

NOTE: IF IT IS DESIRED TO START WITH A SPECIFIED AMOUNT OF
PRIMARY AND ALTERNATE PAGING SPACE, THE CALCULATION OF NSEG CAN
BE PERFORMED AUTOMATICALLY BY USING THE <RECORDS> PARAMETER ON
THE PAGDEV AND ALTDEV CONFIGURATION DIRECTIVES — SEE SECTION 7.

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PAGE

li^-.PRIdQS_I^_DIRECTgfiX_REORGANII.^IION_r_EB.liQO

THE DIRECTORIES THAT CONTAIN PRIMOS IV SOURCE, OBJECT, AND
RUNFILES HAVE BEEN UNIFIED INTO A SINGLE DIRECTORY, THIS HAS
BEEN MADE POSSIBLE BY THE CREATION OF THE SINGLE VERSION OF
PRIMOS IV WHICH ENABLES ONE SET OF OBJECT AND RUN FILES TO BE
USED IN ALL CONFIGURATIONS.

THE DIRECTORY WHICH CONTAINS ALL OF PRIMOS IV IS NAMED PRI400.
IT CONTAINS SUBDIRECTORIES FOR SOURCE, OBJECT, AND OTHER FILES.
THE RUNF1LE IMAGES ARE FOUND IN PRI400, ITSELF. ALL COMINPUT
FILES FOR GENERATING PRIMOS IV ARE ALSO FOUND IN PRIAOO.

THE SOURCE AND OBJECT FOR PRIMOS IV IS BROKEN INTO 4 PARTS:
KERNEL, FILE SYSTEM, NETWORK, AND COMMUNICATIONS. THE SOURCE
FILES FOR THESE FOUR PARTS ARE FOUND IN THE SUBDIRECTORIES KS,
FS, NS, AND CS, RESPECTIVELY. THE COMPILED COR ASSEMBLED) OBJECT
FILES ARE FOUND IN KO, FO, NO, AND CO.

1.4.1 PRI400>INSERT

ALL SINSERT FILES WHICH ARE USED IN COMPILING OR ASSEMBLING
SOURCE PROGRAMS HAVE BEEN PLACED IN PRI4Q0>INSERT. THUS,
SOURCE PROGRAM STATEMENTS OF THE FORM

SINSERT DVMCOM

HAVE BEEN CHANGED TO

IINSERT *>INSERT>DVMCOM

IF PRIMOS SOURCE PROGRAMS ARE TO BE COMPILED OR ASSEMBLED IN
SOME DIRECTORY OTHER THAN PRI400, A SUBDIRECTORY INSERT MU.ST
EXIST IN THE PRESENT HOME DIRECTORY; IN THE SUB-UFD INSERT
MUST 9E ANY SINSERT FILES REQUIRED.

1,4.? PRI400>UTILS

THE SOURCES FOR CERTAIN UTILITIES USED BY PRIMOS IV HAVE BEEN
MOVED INTO "PR^OOUTILS". THESE INCLUDE "PRIMOS" (THE PRIMOS
PRELOADER), MAPGEN (THE PAGE MAP AND COLD START IMAGE
GENERATOR), AND THE VERSION OF VPSD THAT IS LOADED WITH PRIMOS
IV FOR DEBUGGING PURPOSES (SEE SECTION 2.3 FOR COMPLETE
DETAILS ON VPSD FOR KERNEL DEBUGGING). THE COMINPUT FILES FOR
GENERATING THESE UTILITIES ARE FOUND IN PRI4G0.

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PAGE 10

1.5 RUNNING PRIMOS IV

T H E D I R E C T O R I E S P R 4 . 6 4 , P R 4 . 1 6 , P R 4 L 1 6 ,
P R I N E T > N R 4 . 1 6 , AND PRINET>NR4L16 NO LONGER E X I S T .
SYSTEM IS NOW LOADED BY ATTACHING TO PRIRUN AND

PR1NET>NR4.64,
THE PRIMOS IV
ISSUING THE

COMMAND "R PRIMOS". FOR THOSE INSTALLATIONS SUPPORTING PRIMENET,
SECTION 1.7 EXPLAINS HOW TO INSTALL NETWORKS.

1^6_C0NFIGURAII0N_MgDlFI£AII0NS^MD-ADDIII0tiS

SEVERAL CHANGES HAVE BEEN MADE TO THE CONFIG DIRECTIVES WHICH ARE
USED TO SPECIFY HOW PRIMOS WILL BE INITIALIZED- BELOW IS A LIST
OF THE CONFIG
MODIFIED FOR
SECTION 7.

DIRECTIVES THAT HAVE BEEN ADDED, DELETED, OR
REVISION 16 OF PRIMOS. FOR COMPLETE DETAILS, SEE

FAN
FILUNT *

- OBSOLETED
r ADDED

& NOW ILLEGAL

MYNAME -
NET
NSEG

- OBSOLETED
- (MODIFIED
- MODIFIED

& NOW ILLEGAL

NUSEG
RLOGIN

— ADDED
•^OBSOLETED & NOW ILLEGAL

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PAGE 11

1.7 CONFIGURATION AND INSTALLATION OF NETWORKS

AS THE SIZE AND COMPLEXITY OF PRIMENET NETWORKS EXPANDS, THE
SYSTEM MANAGER'S TASK OF NETWORK CONFIGURATION GROWS INCREASINGLY
WORE DIFFICULT. IN ORDER TO PROVIDE A FLEXIBLE AND SIMPLE
INTERFACE FOR NETWORK CONFIGURATION, A TWO STEP PROCESS HAS BEEN
INTRODUCED FOR REVISION 16. THE FIRST STEP OF THE NETWORK
CONFIGURATION IS FOR THE SYSTEM MANAGER TO CREATE A NETWORK
CONFIGURATION FILE USING THE SUPPLIED EXTERNAL COMMAND NETCFG.
(SEE SEPARATE DOCUMENT FOR COMPLETE DETAILS ON NETCFG.) THIS
PROGRAM WILL INTERACTIVELY GUIDE A SYSTEM ADMINISTRATOR THROUGH
NODE, LINK, AND OPTION SPECIFICATIONS REQUIRED TO DESCRIBE A
PRIMENET NETWORK. THE RESPONSES ARE VALIDATED AND WRITTEN INTO
THE NETWORK CONFIGURATION FILE NETCON. AT PRIMOS IV
INITIALIZATION NETCON (WHICH IS ASSUMED TO BE IN CMDNCO) IS
OPENED AND THE INFORMATION PROCESSED.

TO INSTALL NETWORKS WITH REVISION 16 THE FOLLOWING PROCEDURE IS
USED.

FUIIL
>f_PRI!iEI>CMDNCQ
>I_fSIllCQ_<PASSWORD>
>clNiTC£6~
>QU

NEXT, THE OBSOLETE CONFIG DIRECTIVES MYNAME, NET, FAM, RLOGIN
MUST BE REMOVED FROM THE PRIMOS IV CONFIGURATION FILE, AND
REPLACED WITH THE SINGLE CONFIG DIRECTIVE 'NET ON*. FINALLY THE
COLD START NETWORK CONFIGURATION FILE MUST BE CREATED WITH THE
FOLLOWING PROCEDURE:

OK, AI_CMDNCD_<PA.£SWQRD>
OK, NETCFG

<ANSWER QUESTIONS TO DESCRIBE YOUR NETWORK>
OK,

ONCE ALL QUESTIONS DESCRIBING THE NETWORK HAVE BEEN ANSWERED IN
THE DIALOG WITH NETCFG, THE BINARY FILE NETCON WILL BE PLACED IN
CMDNCD (ASSUMING ONE HAS ATTACHED THERE AS INDICATED ABOVE).
NETCON WILL CONTAIN THE INFORMATION FORMERLY SUPPLIED BY THE
CONFIG DIRECTIVES NET, FAM, MYNAME, AND RLOGIN. IN ADDITION,
NOTE THAT 'CONFIG <MYNAME>» IS ALSO OBSOLETE. SPECIFICATION OF
ANY OBSOLETE CONFIG DIRECTIVE RELATED TO NETWORKS WILL RESULT IN
COLD START ERROR MESSAGE.

THE SMLC CONFIG DIRECTIVES ARE NOT RECOMMENDED WHEN CONFIGURING
NETWORKS, AS THEY WILL DISABLE ALL SMLC MAPPING FROM THE
CONFIGURATION FILE. THE SMLC DIRECTIVES ARE INTENDED FOR THOSE
SITES THAT USE SMLC'S WITHOUT NETWORKS.

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PA6E 12

liZil-£2W£IiySAIigN_A^D_INSIALLAIION_OF_FAM

THE SOURCE, OBJECT, RUN, AND COMMAND FILES FOR THE FILE ACCESS
MANAGER FAM ARE CONTAINED IN THE DIRECTORY CHAIN PRINET>FAM.
THE FILES IN THE UFD FAM THAT ARE OF SPECIAL IMPORTANCE TO THE
FAM INSTALLER ARE AS FOLLOWS:

PH_FAM PHANTOM COMMAND FILE
*FAM RUN FILE
C_BLD COMPILE AND LOAD
C LOAD LOAD FROM BINARIES

TO INSTALL THE FAM, THE FOLLOWING MUSI_BE_DONjE:

1) CREATE A UFD CALLED FAM (WHICH MAY BE LOGGED INTO).
THIS UFD MUST_NOI HAVE A PASSWORD.

2) FUTIL THE FILES PH_FAM AND *FAM TO THE NEWLY CREATED
UFD.

TO ENABLE FAM, SIMPLY DO ONE OF THE FOLLOWING:

1) LOGIN UNDER THE USERNAME OF FAM:

OK, LOGIN FAM
FAM CXX)~LOGGED IN AT ...
OK, R_iFAM_1000
GO

FAM WILL NOW RUN, AND NO FURTHER COMMANDS WILL BE READ
FROM THE TERMINAL.

2) RUN THE FAM AS A PHANTOM

OK, A_FAM
OK, PH~PH_FAM
PHANTOM IS USER ..
OK,

TO ENABLE FAM TO COMMUNICATE WITH A PARTICULAR REMOTE NODE,
SFE SEPARATE DOCUMENT DESCRIBING NETCFG. IF REMOTE NODES ARE
NOT SPECIFIED PROPERLY WITH NETCFG, FAM WILL TERMINATE WITH
THE MESSAGE • ****ST 26~» AT THE TERMINAL WHICH ENABLED FAM.
THE MESSAGE *FAMSTOP AT 000026• WILL BE PRINTED AT THE
OPERATOR (USER 1) CONSOLE.

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PAGE 13

l.t*LlHE_DISiC_BOOT

THE DISK BOOTSTRAP PROGRAM, BOOT, HAS BEEN CHANGED TO CATCH MORE
ERRORS AND TO EITHER HALT WITH AN ERROR CODE IN THE CONTROL PANEL
DATA LIGHTS OR TO PRINT AN ERROR MESSAGE. THE ADDITIONAL CHECKS
INCLUDE RUNNING IN MACHINE CHECK MODE, CHECKING UP TO 64K WORDS
OF MEMORY AND A MULTI-RECORD CONSISTENCY CHECK.

PRIOR TO REVISION 16 OF PRIMOS, THE BOOT PROGRAM FOR A STORAGE
MODULE WAS CONTAINED IN A SINGLE 1040 WORD RECORD. AT REVISION
16, THE BOOT PROGRAM HAS BEEN MODIFIED TO USE MORE THAN ONE
RECORD WHEN BOOTING OFF A STORAGE MODULE

THE DISK BOOT, BOOT, OPERATES IN TWO STEPS. ONLY ONE RECORD IS
READ IN BY THE CONTROL PANEL BOOT, CPBOOT. THIS RECORD IS ONLY A
DISK INPUT ROUTINE THAT LOADS THE REST OF THE DISK BOOT. BOOT
THEN INITIALIZES THE SYSTEM CONSOLE AND TYPES PHYSICAL DEVICE^'.
AFTER THE PHYSICAL DEVICE
ATTEMPTS TO FIND AND LOAD THE
TRANSFERS CONTROL TO DOS.

NUMBER IS TYPED
APPROPRIATE DOS

BY THE USER, BOOT
INTO MEMORY AND

1.8.1 ERRORS

ERRORS DETECTED WHILE LOADING BOOT USING ITS OWN FIRST RECORD
WILL CAUSE A HALT WITH AN ERROR CODE IN THE CONTROL PANEL DATA
LIGHTS. THE ERRORS CHECKED AND PUT INTO THE
STAGE WILL BE:

LIGHTS AT THIS

ERROR OCTAL it I N LIGHTS

PARITY 100
MACHINE CHECK
NON-OCTAL PHYSICAL DEVICE NUMBER
BAD DEVICE TYPE

101
102
103

BAD STATUS OPTION B, B»,
STORAGE MODULE, DISKETTE

BAD RECORD ID - BAD CRA (HIGH-LOW)
104
105

INCOMPATIBLE ROOT RECORDS
•FILE' NOT FOUND
MEMORY TEST FAILURE

106
107
110

PARITY ERROR AND MACHINE CHECK ERROR, 100, 101

IF A PARITY OR MACHINE CHECK ERROR OCCURS WHILE LOADING THE
BOOT PROGRAM ITSELF, THEN A HALT WILL OCCUR WITH THE CODE
100 OR 101 RESPECTIVELY IN THE CONTROL PANEL DATA LIGHTS.
PARITY AND MACHINE CHECK ERRORS ARE CAUGHT BY THE HARDWARE.
NO FURTHER INFORMATION IS AVAILABLE ON THE P10Q, P200 OR
P3HD. ADDITION INFORMATION CAN BE FOUND IN THE DIAGNOSTIC
STATUS WORD ON THE P400 OR P500. AFTER THE MEMORY TEST,
THE ERROR MESSAGES, 'PARITY ERROR', OR, 'MACHINE CHECK',

WILL RE
PERSIST.

PRINTED. IF THE ERRORS PERSIST, THE MESSAGES

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PAGE 14

NON OCTAL PHYSICAL DEVICE NUMBER, 102

THE MESSAGE, 'OCTAL ONLY', WILL BE PRINTED
ENTERS A NON OCTAL CHARACTER FOP THE PHYSICAL
THE 'PHYSICAL DEVICE=' PROMPT IS ISSUED AGAIN

IF THE USER
DEVICE NUMBER
AT THE SYSTEM

CONCOLE.

BAD DEVICE TYPE, 103

THE BAD DEVICE TYPE CODE WILL APPEAR IN THE DATA LIGHTS IF
A DEVICE TYPE OF 7 IS DETECTED. THE 'PHYSICAL
PROMPT IS ISSUED AGAIN AT THE SYSTEM CONCOLE..

DEVICE=

BAD STATUS, 104

WHENEVER BAD STATUS IS DECTECTED, THE STATUS IS STORED IN
LOCATION 40 OCTAL. DURING THE FIRST PHASE, LOADING THE
BOOT PROGRAM ITSELF, A HALT THEN OCCURS WITH THE CODE 104
IN THE CONTROL PANEL DATA LIGHTS
DOS, THE MESSAGE 'BAD STATUS'
STATUS WORD.

WHILE TRYING TO LOAD
IS PRINTED FOLLOWED BY THE

BAD RECORD ID, 105

AS EACH RECORD IS READ, THE RECORD ADDRESS REQUESTED IS
CHECKED AGAINST THE ADDRESS OF THE RECORD READ AS FOUND IN
THE RECORD ITSELF. IF THESE ADDRESSES DO NOT MATCH, THEN A
HALT WILL OCCUR WITH THE CODE 105 IN THE CONTROL PANEL DATA
LIGHTS. THE REQUESTED ADDRESS IS IN LOCATIONS 723 AND 724
OCTAL AND
761 OCTAL,

THE ADDRESS IN THE RECORD IS IN LOCATIONS 760 AND

WHEN SEARCHING FOR OR LOADING DOS, A MESSAGE WILL BE
PRINTED 'BAD RECORD ID, RRRRRR RRRRRR FFFFFF FFFFFF1, WHERE
THE R'S ARE TWO WORDS OF REQUESTED OCTAL ADDRESS AND THE
F'S ARE TWO WORDS OF FOUND OCTAL ADDRESS.
DEVICE=» PROMPT IS ISSUED AGAIN AT THE SYSTEM

THE 'PHYSICAL
CONCOLE..

INCOMPATIBLE ROOT RECORDS, 106

THE FIRST AND SECOND RECORDS
COME FROM THE SAME VERSION
COME FROM DIFFERENT VERSIONS

ARE CHECKED TO SEE IF THEY
OF THE BOOT PROGRAM. THEY MAY
IF AN OLD (CONTROL PANEL)

CPBOOT WHICH ALWAYS READS FROM UNIT ONE GETS THE FIRST
RECORD OF A NEW (DISK) BOOT. THE NEW BOOT GETS ITS SECOND
RECORD FROM THE UNIT DESIGNATED BY SWITCHES 8 AND 9. THE
SECOND AND
DI FFERENT
RECOGNIZED

SUBSEQUENT RECORDS MAY THEREFORE COME FROM A
VERSION OF BOOT. IF SUCH AN INCOMPATIBILITY IS
. THEN THE BOOT PROGRAM WILL HALT WITH A 106

OCTAL IN THE DATA LIGHTS

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.2 PAGE 15

FILE1 NOT FOUND, 107

IF THE REQUIRED VERSION OF DOS OR THE DOS UFD IS NOT ON THE
REQUESTED PHYSICAL DEVICE, THEN THE MESSAGE, •"FILE1 NOT
FOUND", WILL BE PRINTED, WHERE 'FILE' IS THE NAME OF THE
REQUESTED FILF. THE 'PHYSICAL DEVICE=»
AGAIN AT THE SYSTEM CONCOLE..

PROMPT IS ISSUED

MEMORY TEST FAILURE, 110

WHILE TESTING THE MEMORY, IF
THAT READ DO NOT MATCH, THEN

THE TEST PATTERN WRITTEN
A MESSAGE WILL BE PRINTED,

AND

•MEM TEST MISMATCH LOC XXXXXX WHERE XXXXXX IS THE
LOCATION OF THE WORD BEING TESTED. DURING MEMORY TEST, IF
EITHER A PARITY ERROR OR A MACHINE CHECK IS DETECTED, THEN
THE ADDRESS OF THE WORD BEING TESTED WILL BE PRINTED
FOLLOWED PY THE MESSAGE 'PARITY ERROR
THE 'PHYSICAL DEVICE=« PROMPT IS ISSUE
CONCOLE.. _

OR 'MACHINE CHECK'.
AGAIN AT THE SYSTEM

1.9 HALTS

UNDER CERTAIN UNUSUAL CIRCUMSTANCES (HARDWARE
MALFUNCTION), PRIMOS WILL HALT (AFTER HAVING
INSTRUCTION).

OR SOFTWARE
EXECUTED A HLT

THE HALTS THAT ARE RFLATED TO HARDWARE ARE CALLED CHECKS. (FOR A
COMPLETE DISCUSSION OF CHECKS IN THE PAOO, SEE MAN2798.) WHEN
PRIMOS HALTS DUE TO A CHECK OF SOME KIND, AN ADDRESS (OCTAL) IS
LEFT IN THE DATA LIGHTS ON THE CONTROL PANNEL. WHEN THIS OCCURS,
THE HALT IS SAID TO BE A CODED HALT.

FOR OTHER HALTS (SOFTWARE RELATED),
(M PRMOS) AND THE CONTENTS OF THE

A LOAD MAP OF PRIMOS
DATA LIGHTS ARE USED TO

DETERMINE THE LOCATION OF THE HALT

li9i1_CHECKS

CHECKS INDICATE VARIOUS (AND SOMETIMES SERIOUS) EXCEPTIONAL
CONDITIONS THAT HAVE OCCURED IN THE HARDWARE. WHEN A CHECK
OCCURS, FOUR WORDS OF INFORMATION (PB HIGH, PB LOW, KEYS, AND
MODALS) ARE SAVED IN A CHECK_HEADER AND CONTROL IS TRANSFERRED
TO THE WORD FOLLOWING THE CHECK HEADER. THE CHECK HEADERS ARE
WIRED DOWN IN THE SEG4 MODULE, AND HENCE CAN BE EXPECTED NOT
TO MOVE. CURRENTLY DEFINED CHECKS ARE:

SYMBOL HEADER LIGHTS DESCRIPTION

PWRFL_ 2UU 2~06 POWER FAILURE
r*EMPAl 270 277 UNCORRECTED MEMORY PARITY ERROR
MCHK 300 306 MACHINE CHECK
MMOD 310 316 MISSING MEMORY MODULE

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS I V , REVISION 16 .2 PAGE 16

1.9.2 MEMORY ERRORS

THE FOLLOWING ARE HALT LOCATIONS IN PRIMOS WHEN MEMORY ERRORS
OCCUR :

SXMBOL D£SCRIEIIQ_N

BDMEM_ BAD MEMORY AT COLD START. THE PAGE IS
AUTOMATICALLY MAPPED OUT BY DEPRESSING THE START
SWITCH ON THE CONTROL PANEL. THE HALT IS IN
SEG14.

ME MP A SEE CHECKS (ABOVE).

MMOD SEE CHECKS (ABOVE) .

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, RFVISION 16.2 PAGE 17

2^NEW_AND_P20DIFI£D_PgX^OS_IV_FACJLIIIES

2.1 FILE SYSTEM MODIFICATIONS

2.1.1 ADDITIONAL FILE UNITS

THE NUMBER OF FILE UNITS AVAILABLE TO EACH USER HAS BEEN
INCREASED TO 63; UNITS 1 THRU 62 WAY BE USED FOR ANY PURPOSE,
AND UNIT 63 IS RESERVED AS THE COMOUTPUT FILE UNIT.

2.1.2 NEW SRCH$$ KEY - SYSTEM SUPPLIED FILE UNIT

IT IS NOW POSSIBLE TO HAVE PRIMOS CHOOSE AN UNUSED FILE UNIT
FOR OPERATIONS PERFORMED BY SRCH$$.

K.tGETU PRIMOS CHOOSES AN UNUSED FILE UNIT NUMBER AND
RETURNS IT TO THE CALLING PROGRAM IN UNIT.

WHEN REQUESTED TO SUPPLY A FILE TO UNIT NUMBER WITH
THE USE OF THE KEY KSGETU, SRCH$$ SUPPLIES THE
HIGHEST UNIT NUMBER THAT IS CURRENTLY NOT IN USE.
THIS POLICY WILL TEND TO AVOID
EXISTING COMMON USAGE, SUCH AS
COMINPUT UNIT.

CONFLICT WITH
UNIT 6 IS "THE"

THE USER SHOULD NOT BUILD ANY DEPENDENCIES ON THE
ABOVE POLICY INTO ANY OF HIS PROGRAMS AS SRCH$$ IS
SPECIFIED TO RETURN ANY UNUSED UNIT. IN FACT, THE
USER IS ENCOURAGED TO ALWAYS USE THE KSGETU FEATURE
TO AVOID ANY FUTURE CONFLICT WITH UNITS USED BY
PRIME SUPPLIED SUB-SYSTEMS (MIDAS, ETC.).

KSGETU (:40000) IS AN ADDITIVE KEY AND IS ADDED TO
THE KEY(S) SUPPLIED TO SRCHSS.

EXAMPLE

INTEGER*2 CODE, TYPE, UNIT
$INSERT SYSCOM>KEYS.F

CALL SRCH$$(K$READ+K$GETU,'FILE',4,UNIT,TYPE,
X CODE)
IF (CODE .NE. 0) GOTO ERROR PROCESSOR

THE ABOVE FORTRAN CALL WILL ATTEMPT TO OPEN THE FILE NAMED
'FILE' IN THE USER'S CURRENTLY ATTACHED UFD. IF SUCCESSFUL,
THE FILE UNIT NUMBER ON WHICH 'FILE1 HAS B~EEN OPENED IS~
RETURNED IN UNIT. THE TYPE OF THE FILE OPENED IS RETURNED IN
TYPE, AND CODE IS SET TO ZERO I F T H E R E ARE NO ERRORS. IF
THERE ARE ANY ERRORS, CODE WILL BE NONZERO,
TYPE AND UNIT ARE UNDEFINED.

AND THE VALUES OF

CONFIGURATION AND OPERATIONAL MODIFICATIONS

PRIMOS IV, REVISION 16.? PAGE 18

IF NO FILE UNITS ARE AVAILABLE, THE ERROR CODE ESFUIU (ALL
UNITS IN USE) IS RETURNED. THIS CODE IS RETURNED IF EITHER 1)
THE PROCESS (USER) HAS EXCEEDED THE MAXIMUM NUMBER OF FILE
UNITS THE PROCESS (USER) MAY HAVE, OR 2) THE TOTAL NUMBER OF
FILE UNITS IN USE FOR ALL PROCESSES (USERS) EXCEEDS THE
MAXIMUM NUMBER OF FILE UNITS AVAILABLE TO ALL PROCESSES
(USERS).

2.1.3 NEW PRWFSS KEY - GUARANTEED WRITE TO DISK

IT IS NOW POSSIBLE TO GUARANTEE THAT PRWF$$ WHEN CALLED WITH
THE KEY K$WRIT WJLL NOT RETURI
INVOLVED ARE WRITTEN TO DISK.

U N T I L T H E D I S K R E C O R D (S)

KSFR.CW ACTUALLY PERFORM THE WRITE TO DISK BEFORE EXECUTING
THE NEXT INSTRUCTION IN THE PROGRAM. SINCE THE
KSFRCW KEY DEFEATS THE DISK BUFFERING MECHANISM
(ASSOCIATIVE BUFFERS) IT SHOULD_B E_USED_WIJ_H_CAR E_AS
IT INCREASES THE ACTUAL AMOUNT OF DISK l7o. IT
SHOULD ONLY BE USED WHEN A PROGRAM MUST KNOW THAT
DATA IS PHYSICALLY ON A DISK (E.G.,
IMPLEMENTING ERROR RECOVERY SCHEMES).

AS WHEN

THE PROGRAMMER IS RESPONSIBLE FOR ENSURING THAT ONLY
ONE PROCESS (USER) IS INVOLVED IN THE PRWF$$ CALL
CONCURRENTLY. THE FILE MAY BE OPEN FOR USE BY
SEVERAL PROCESSES (DEPENDING ON THE SETTING OF THE
FILE'S READ/WRITE CONCURRENCY LOCK, RWLOCK). THE
FORCED WRITE APPLIES ONLY TO THE DATA WRITTEN BY THE
PROCESS PERFORMING THE OPERATION.

K$FRCW (:40000) IS AN ADDITIVE KEY AND IS ADDED TO
THE KSWRIT KEY SUPPLIED TO PRWF$$.

EXAMPLE:

INTEGER*2 ARRAY(40)
$INSERT SYSCOM>KEYS.F

CODE, UNIT, RET

CALL PRWF$$(K$WRIT+K$FRCW+KSPREA,UNIT,L0C(ARRAY),
10,INTL(10),RET,CODE)

IF (CODE ,NE. 0) GOTO ERROR PROCESSOR

THE ABOVE FORTRAN CALL WILL CAUSE THE FILE OPEN ON UNIT NUMBER
UNIT TO BE POSITIONED TO THE TENTH WORD IN THE FILE, AND THE
FIRST 10 WORDS OF ARRAY WILL BE WRITTEN TO IT. THE NEXT
INSTRUCTION IN THE USER»S PROGRAM WILL NOT BE EXECUTED UNTIL
THE DATA HAS ACTUALLY BEEN WRITTEN TO DISK. IF AN ERROR IS
ENCOUNTERED WHILE WRITING TO DISK, THE ERROR CODE ESDISK (DISK
I/O ERROR) IS RETURNED. IF MORE THAN ONE CONCURRENT USER OF
THE DISK RECORD IS DETECTED, THE ERROR CODE ESFIUS (FILE IN
USE) IS RETURNED.
WILL NOT BE PERFORMED

IN THIS CASE,
IMMEDIATELY.

THE WRITE IS NOT LOST, BUT

NEW AND MODIFIED PRIMOS IV FACILITIES

PRIMOS I V , REVISION 1 6 . 2 PAGE 19

2.1 .4 KFYS.F UPDATE

THE FOLLOWING IS AN UPDATED LISTING OF SYSCOM>KEYS.F.

C SYSCOM>KEYS.F MNEMONIC KEYS FOR FILE SYSTEM (FTN) 07/25/78
NOLIST

C
C TABSET 6 11 28 69
C

INTEGER*? K$READ,KSWRIT,KSPOSN,K$TRNC,K$RPOS,K$PRER,KSPREA,
X K$POSR,K$POSA,K$CONV.K$RDWR,K$CLOS„K$DELE,K$EXST,K$GETU,
X K$IUFD,KSISEG,KSCACC,K$NSAM,K$NDAM,K$NSGS,K$NSGD,K$CURR,
X KSIMFD,K$ICUR,KSSETC,K$SETH,K$ALLD,K$SPOS,K$GOND,K$MSIZ,
X K$MENT„K$ENTR„K$SENT,K$GPOS,K$UPOS„K$NAME,K$FRCW,
X KSPROT,K$DTIM,KSDMPB,K$RWLK,KS\!RTN,KSSRTN,K$lRTN,K$HOME,
X K$MVNT,KSRSUR,KSFULL,K$FREE
PARAMETER

X

x /***/
X /* */
X /* */
X /* KEY DEFINITIONS */
X /* */
X /* */
X /****************•**** PRWFSS ********************* */
X /* ****** RWKEY ****** */
X KSREAD = :1, /* READ */
X KSWRIT = :2, /* WRITE */
X K$POSN = :3, /* POSITION ONLY */
X KSTRNC = :4, /* TRUNCATE */
X KSRPOS - :5, /* READ CURRENT POSITION *7
X /* ****** POSKEY ****** */
X KSPRER = :
X KSPREA = :
X KSPOSR =
X KSPOSA =
X /*
X KSCONV = :

:0, /* PRE-POSITION RELATIVE */
:10, /* PRE-POSITION ABSOLUTE */
:20, /* POST-POSITION RELATIVE */
:30, /* POST-POSITION ABSOLUTE */

****** MODE ****** */
:400, /* CONVENIENT NUMBER OF WORDS */

X KSFRCW = :40000, /* FORCED WRITE TO DISK */
X /* */
X /**+****************** SRCHSS ********************* */
X /* ****** ACTION ****** */
X /* KSREAD = :1, /* OPEN FOR READ */
X /* KSWRIT = : 2 , /* OPEN FOR WRITE */
X KSRDWR = :3, /* OPEN FOR READING AND WRITING */
X KSCLOS = :4, /* CLOSE FILE UNIT */
X KSDELE = :5, /* DELETE FILE */
X KSEXST = :6, /* CHECK FILE'S EXISTENCE */
X KSGETU = :4QQ00, /* SYSTEM RETURNS UNIT NUMBER */
X /* ****** R E F ****** */
X KSIUFD =
X KSISEG = :
X KSCACC = :

:0, /* FILE ENTRY IS IN UFD */
:100, /* FILE ENTRY IS IN SEGMENT DIRECTORY */
:1000, /* CHANGE ACCESS */

X /* ****** NEWFIL ****** */
X KSNSAM = :0, /* NEW SAM FILE */

NEW AND MODIFIED PRIMOS IV FACILITIES

PRIMOS IV, REVISION 16.2 PAGE 20

X KSNDAM = :20Q0, /* NEW DAM FILE */
X KSNSGS = :4000, /* NEW SAM SEGMENT DIRECTORY */
X KSNSGD = 16000, /* NEW DAM SEGMENT DIRECTORY */
X K$CURR = :177777,/* CURRENTLY ATTACHED UFD */
X /* */
X /********************* ATCHSS ********************* */
X /* ****** KEY ****** */
X KSIMFD = :0, /* UFD IS IN MFD */
X KSICUR = : 2 , /* UFD IS IN CURRENT UFD */
X /* ****** KEYMOD ****** */
X KJSETC = :0, /* SET CURRENT UFD (DO NOT SET HOME) */
X KSSETH = :1, /* SFT HOME UFD (AS WELL AS CURRENT) */
X /* ****** NAME ****** */
X KSHOME = :0„ /* RFTURN TO HOME UFD (KEY=K$IMFD) */
X /* ****** LDISK ****** */
X KfcALLD = :10Q000,/* SEARCH ALL DISKS */
X /* KSCURR = :177777„/* SEARCH MFD OF CURRENT DISK */
X /* *./
X /********************* SGDR$$ ********************* */
X / * ****** KEY ****** */
X K$SPOS = :1, /* POSITION TO ENTRY NUMBER IN SEGDIR */
X KSGOND = :2, /* POSITION TO END OF SEGDIR */
X KSGPOS = :3, /* RETURN CURRENT ENTRY NUMBER */
X KSMSIZ = :4, /* MAKE SEGDIR GIVEN NR OF ENTRIES */
X K$MVNT = :5, /* MOVE FILE ENTRY TO DIFFERENT POSITION */
X K$FULL = :6, /* POSITION TO NEXT NON-EMPTY ENTRY */
X KSFREE = :7, /* POSITION TO NEXT FREE ENTRY */
X /* */
X /********************* RDEN$$ ********************* */
X /* ****** KEY ****** */
X /* KSREAD = :1, /* READ NEXT ENTRY */
X KSRSUB = :2, /'* READ NEXT SUB-ENTRY *./
X /* KSGPOS = :3, /* RETURN CURRENT POSITION IN UFD */
X KSUPOS = :4, /* POSITION IN UFD */
X KSNAME = :5, /* READ ENTRY SPECIFIED BY NAME */
X /* */
X /********************* SATR$$ ********************* */
X /* ****** KEY ****** */
X K$PROT = :1, /* SET PROTECTION */
X KSDTIM = :2, /* SET DATE/TIME MODIFIED */
X K$DMPB = :3, /* SET DUMPED BIT */
X KSRWLK = :4„ /* SET PER FILE READ/WRITE LOCK */
X /* */
X /********************* ERPR$$ ********************* */
X /* ****** KEY ****** */
X KINRTN = :0, /* NEVER RETURN TO USER */
X KSSRTN = :1, /* RETURN AFTER START COMMAND */
X KSIRTN = :2 /* IMMEDIATE RETURN TO USER */
X /* */
X /*** ********************/
LIST

NEW AND MODIFIED PRIMOS IV FACILITIES

PRIMOS IV, REVISION 16.2 PAGE 21

2.1.5 ERRD.F UPDATE

THE FOLLOWING IS AN UPDATED LISTING OF SYSCOM>ERRD.F.

C SYSCOM>ERRD.F MNEMONIC CODES FOR FILE SYSTEM CFTN) 07/25/78
NOLIST

C
C TABSET 6 11 23 56 65
C

INTEGER*2 EEOF,EBOF,E$UNOP,ESUIUS,E$FIUS,E$BPAR,E$NATT,
X E$FDFL,E$DKFL,E$NRIT,E$FDEL,E&NTUD,E$NTSD,E$DIRE,
X E$FNTF,E$FNTS,E$BNAM,E$EXST„E$DNTE,E$SHUT,E$DISK,
X E$BDAM,E$PTRM,E$BPAS,E$BCOD,E$BtRN,E$OLDP,E$BKEY,
X E$BUNT,E$BSUN,E$SUNO,E$NMLG,F$SDER,E$SUFD,E$BFTS,
X ES>FITB,E$NULL,F$IREM,E$DVIU,E$RLDN,E$FUIU,E$DNS,
X E$TMUL,E$F6ST,E$BSGN,E$FIFC,E$TMRU,E$NASS,E$BFSV,
X E$SEM0,E$NTIM,E$FABT,E$F0NC,E$NPHA,E$ROOM,E$WTPR,
X E$ITRE,E$LAST

C
PARAMETER

X
X /*** ****** **********/

X /* */
X /* */
X /* CODE DEFINITIONS */
X /* */
X /* */
X ESEOF= 1, /* END OF FILE PE */
X E$BOF = 2, /* BEGINNING OF FILE PG */
X E$UNOP= 3, /* UNIT NOT OPEN PD,SD */
X £$UIUS= 4, /* UNIT IN USE SI */
X E$FIUS= 5, /* FILE IN USE SI */
X E*BPAR= 6, /* BAD PARAMETER SA */
X ESNATT= 7, /* NO UFD ATTACHED SL,AL */
X E$FDFL= 8, /* UFD FULL SIC */
X E$DKFL= 9, /* DISK FULL DJ */
X E$NRIT=10, /* NO RIGHT SX */
X E$FDEL=11, /* FILE OPEN ON DELETE SD */
X E$NTUD=12, /* NOT A UFD AR */
X ES>NTSD = 13, /* NOT A SEGDIR — */
X E$DIRE=14, /* IS A DIRECTORY — */
X E$FNTF=15, /* (FILE) NOT FOUND SH,AH */
X E$FNTS=16, /* (FILE) NOT FOUND IN SEGDIR SQ */
X E$BNAM=17, /* ILLEGAL NAME CA */
X E$EXST=18, /* ALREADY EXISTS CZ */
X EJ-DNTE = 19, /* DIRECTORY NOT EMPTY — */
X E$SHUT=20, /* BAD SHUTDN (FAM ONLY) BS */
X E$DISK=21, /* DISK I/O ERROR WB */
X ESBDAM=22, /* BAD DAM FILE (FAM ONLY) SS */
X F$PTRM=23, /* PTR MISMATCH (FAM ONLY) PC,DC,AC */
X E$BPAS=24, /* BAD PASSWORD (FAM ONLY) AN */
X E$BC0D=25, /* BAD CODE IN ERRVEC — */
X E$BTRN=26, /* BAD TRUNCATE OF SEGDIR — */
X EJ0LDP=27, /* OLD PARTITION — */

NEW AND MODIFIED PRIMOS IV FACILITIES

PRIMOS IV, REVISION 16.2 PAGE 22

E$BKEY=
E$8UNT=

28,
29,

BAD
BAD

KEY
UNIT NUMBER

ESBSUN=
E$SUNO=
E$NMLG=

30,
31,
32,

* BAD
* SEGD
* NAME

SEGD
IR U
TOO

IR UNIT
NIT NOT
LONG

SA
OPEN

E$SDER=
E$BUFD=
ESBFTS=

33,
34,
35,

* SEGD
* BAD
* BUFF

IR E
UFD
ER T

RROR

00 SMALL

SQ

E$FITB=
E$NULL=
E*IREM=

36,
37,
38,

* FILE
* (NUL
* ILL

TOO
L ME
RE MO

BIG
SSAGE)
TE REF

E$DVIU=
E$RLDN=
E$FUIU=

39,
40,
41,

* DEVI
* REMO
* ALL

CE I
TE L
UNIT

N USE
INE DOWN
S IN USE

ESDNS=4
E$TMUL=
E*FBST=

2,
43,
44,

* DEVICE NOT STARTED
* TOO MANY UFD LEVELS
* FAM - BAD STARTUP

ESBSGN;
E$FIFC =
E$TMRU:

;45,
=46,
=47,

* BAD SEGMENT NUMBER
* INVALID FAM FUNCTION CODE
* MAX REMOTE USERS EXCEEDED

E$NASS =
E$BFSV;

E$SEMO:

: 4 8 ,
: 4 9 ,
••50,

* DEVICE NOT ASSIGNED
* BAD FAM SVC
* SEM OVERFLOW

E$NTIM =
ESFABT:
E$FONC =

51,
:52,
53,

* NO TIMER
* FAM ABORT
* FAM OP NOT COMPLETE

ESNPHA =
E$RO0M =
E$WTPR:

54,
:55,
56,

* NO P
* NO
* DIS

HANT
ROOM
K WR

OMS AVAILABLE

ITE-PROTECTED
X
X
X /*

E$ITRE =
ESLAST;

57,
=57

* ILLEGAL TREENAME
* THIS ***MUST*** BE LAST

X /* *
X /************************•********************************
LIST

NEW AND MODIFIED PRIMOS IV FACILITIES

PRIMOS IV, REVISION 16.2 PAGE 23

2-2_FIGHT_0EGAB!IE_SUPPORI

AT REVISION 16, PRIMOS IV HAS BEEN MODIFIED TO SUPPORT SYSTEMS
WITH UP TO EIGHT MEGABYTES OF MEMORY.

_-__VPSD_FOB_<ERNEL_DEBUGGING

THE PRIMOS IV OPERATING SYSTEM KERNEL HAS A BUILT-IN VERSION OF
THE VPSD DEBUGGER. IT IS LOADED AS PART OF SEGMENT NUMBER 4, AND
A TOEHOLD TO ENTER IT IS LOCATFD AT »600 IN SEGMENT 14. THE
TOEHOLD SERVES TO ENTER 64V MODE AND LOAD DTARO BEFORE
TRANSFERRING CONTROL TO VPSD. THUS, AFTER AN OPERATING SYSTEM
CRASH, THE MACHINE CAN BE MASTER-CLEARED, *60a ENTERED IN THE
SWITCHES, AND THE START SWITCH DEPRESSED IN LOAD MODE. VPSD WILL
BE ENTERED AND WILL BE ABLE TO ACCESS ANY KERNEL SEGMENT.
SEGMENTS NOT IN DESCRIPTOR TABLE 0, HOWEVER, CANNOT BE DIRECTLY
ACCESSED BY VPSD.

THIS VERSION OF VPSD IS USABLE ONLY IF THE PAGES OF SEGMENT 4
THAT CONTAIN VPSD ARE WIRED (MADE N0N-PA6ABLE, ALSO KNOWN AS
LOCKED).

yPSD_BAUD_RAT_E

THE VPSD SUPPLIED AS PART OF PRIMOS IV IS SET TO RUN THE SYSTEM
TERMINAL AT 300 BAUD. IN SOME CASES, IT MAY BE DESIRABLE TO
CHANGE THIS RATE. VPSD, ITSELF, HAS THREE CONTROL WORDS
ASSEMBLED - INTO IT THAT AFFECT THE BAUD RATE OF THE SYSTEM
TERMINAL. THE VALUES OF THESE THREE WORDS CAN BE PATCHED IF THE
SYSTFM TERMINAL CANNOT RUN AT 300 BAUD, OR IF A DIFFERENT BAUD
RATE IS DESIRED.

VPSD IS LOADED AS PART OF SEGMENT NUMBER 4 STARTING AT A WORD
OFFSET OF 2000COCTAL). THE THREE WORDS TO PATCH ARE LOCATED
STARTING AT 2Q04(0CTAL) IN SFG 4. THE FOLLOWING TABLE GIVES THE
VALUES OF THESE WORDS FOR VARIOUS BAUD RATES:

BAUD RATE 2004 2005 2006

110 110 27 74000
DEFAULT 300 1010 76 34000

1200 2010 373 34000
9600 3410 3735 34000

THESE WORDS CAN BE PATCHED FROM THE CONTROL PANEL, OR THEY CAN BE
PATCHED AFTER THE SYSTEM IS BROUGHT UP BY USING THE SHARE COMMAND
AND THE VPSD COMMAND.

NEW AND MODIFIED PRIMOS IV FACILITIES

PRIMOS IV, REVISION 16.2 PAGE 24

2.4 FAM EXTENSIONS

2.4.1 REMOTE DISK ACCESS

IT IS NOW POSSIBLE TO PERMIT OR DENY ACCESS TO LOCAL FILE SYSTEM
DISK PARTITIONS FROM SPECIFIC OR ALL REMOTE NODES. (SEE SECTION
3 FOR DETAILS ON THE NEW INTERNAL COMMAND 'REMOTE'.)

2.4.2 EXPANDED FUNCTIONALITY

FAM SUPPORTS THE EXPANDED NUMBER OF FILE UNITS AND REMOTE NODES
AVAILABLE AT REVISION 16 OF PRIMOS IV

2.4.3 BETTER MULTIPLEXING OF REMOTE USERS

FAM NOW RELEASES ANY OF ITS OWN INTERNAL RESOURCES IT HAS
RESERVED FOR A REMOTE USER WHEN THAT USER NO LONGER HAS FILE
UNITS OPEN OR A VALID HOME/CURRENT ATTACH POINT ON THAT SYSTEM.
THIS ENABLES FAM TO SUPPORT MORE REMOTE ACTIVITY WITHOUT
EXHAUSTING RESOURCES.

2.^_DISK_WRITEzPROIECI_VIA^SOFIWAR£

AT REVISION 16 OF PRIMOS IV, A FEATURE HAS BEEN ADDED THAT ALLOWS
INDIVIDUAL PARTITIONS OF A STARTED DISK TO BE SOFTWARE WRITE
PROTECTED. THE PROTECTION IS ACHIEVED BY DETERMINING THE NATURE
OF THE FILE OPERATION ON A DISK PARTITION AT THE TIME THE FILE IS
ACCESSED, AND THE EFFECT OF THAT OPERATION ON THE DISK. IF THE
FINAL EFFECT OF THE OPERATION IS TO MODIFY THE DISK, THE
OPERATION IS NOT PERMITTFD.

FOR EXAMPLE, PROTECTION CHECKING WOULD BE PERFORMED FOR A CNAME
COMMAND WHEN THE FILE IS ACCESSED. IF THE ATTEMPTED FILE
OPERATION WAS TO READ FROM THE FILE, THE PROTECTION CHECKING
WOULD OCCUR WHEN THE FILE WAS OPENED, NOT FOR EVERY READ
PERFORMED. IN ESSENCE, AS FEW CHECKS AS POSSIBLE ARE MADE TO
PROVIDE THE NECESSARY PROTECTION. FOR MORE DETAILS, SEE THE
ADDISK AND STARTUP COMMANDS IN SECTION 3.

2.6_IMPRQVED_P.ISK^RE£OVEPY

THE DISK ERROR RECOVERY SCHEMES HAVE BEEN MODIFIED TO CORRECT
PROBLEMS OCCURING DURING A WARM START. FOR COMPLETE DETAILS, SEE
SECTION 9.

NEW AND MODIFIFD PRIMOS IV FACILITIES

PRIMOS IV, REVISION 16.? PAGE 25

3 INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

3.1 TREENAMES

AT REVISION 16 OF PRIMOS, ALL INTERNAL PRIMOS COMMANDS THAT
FORMERLY ACCEPTED A FILENAME AS THEIR FIRST ARGUMENT, NOW ACCEPT
A TREENAME AS WELL. THE EFFECT OF THIS EXTENDED FUNCTIONALITY IS
A MORE GENERAL ENVIRONMENT FOR PROGRAM DEVELOPMENT UNDER PRIMOS.
THESE COMMANDS ARE:

ATTACH
COMINPUT

BINARY
COMOUTPUT

CLOSE
CREATE

CNAME
DELETE

INPUT
PROTEC
SHARE

LISTING
RESTORE

OPEN
RESUME

PHANTOM
SAVE

TERMINOLOGY

TREENAME: THE COMPLETE DESCRIPTION OF A DIRECTORY TREE, STARTING
WITH "A SPECIFIED DISK VOLUME OR PARTITION AND ENDING WITH A
FILENAME. THE GENERAL FORMAT OF A TREENAME IS:

PATHNAME>FILENAME

NOTE: BLANKS ARE NOT ALLOWED IN TREENAMES EXCEPT FOR
SEPARATION OF DIRECTORY NAMES AND PASSWORDS. TREENAMES WHICH
CONTAIN PASSWORDS MUST BE QUOTED.

PATHNAME: .A CHAIN OF DIRECTORIES OPTIONALLY STARTING WITH THE
DISK "VOLUME NAME AND ENDING WITH THE NAME OF THE DIRECTORY
CONTAINING
IS:

THE FILES TO BE ACCESSED THE FORMAT OF PATHNAME

C <VOLUME> 1
C <LDISK> 1
[<*> 2 1

DIRECTORY-CHAIN

ONLY ONE OF THE DISK SPECIFIERS <VOLUME>, <LDISK>, OR <*> MAY BE
PRESENT. THE ANGLE BRACKETS ARE REQUIRED FOR DISK SPECIFICATION.
THE DISK SPECIFIERS ARE INTERPRETED AS FOLLOWS:

<VOLUME> IS THE NAME OF A DISK.
<LDISK> IS THE LOGICAL NUMBER OF A DISK (IN OCTAL).
<*> IS THE DISK OF THE CURRENT ATTACH POINT.

DIRECJORY-CHAIN: PART OF A PATHNAME; A SERIES OF DIRECTORIES
AND OPTIONAL PASSWORDS SEPARATED BY THE SYMBOL •>>, AS IN:

DIRECTORY [PASSWORD} ^SUBDIRECTORY [PASSWORD} 1 ...

IF THE FIRST ELEMENT OF DIRECTORY-CHAIN IS AN »*• IT IS
INTERPRETED AS THE MOST RECENTLY SET HOME
ASTERISK CONVENTION FOR HOME DIRECTORY MUST NOT

DIRECTORY. THE
BE SPECIFIED IF A

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16.2 PAGE 26

LOGICAL DISK IS SPECIFIED.

DIRECTORY: A DIRECTORY MAY BE THE ?IFD, A UFD, OR A SUB-UFD.
DIRECTORIES WITH NAMES IN THE MFD ARE UFDS; ALL OTHER
DIRECTORIES ARE SUB-UFDS.

NOJE: IF A TREENAME CONTAINS A PASS WORD(S), IT MUST BE ENCLOSED
"" WITHIN SINGLE QUOTATION MARKS AS IN: 'MFD XXXXXX>MYUF D [.

IN ALL OTHER CASES, A TREENAME NEED NOT BE SPECIFIED
WITHIN SINGLE QUOTATION MARKS AS IN:
MYUFD>MYSUBUFD>TEST .LST. NOTE THAT BLANKS DO NOT APPEAR
IN THIS TREENAME.

THE FOLLOWING DESCRIBES THE EXTENDED SYNTAX AND ILLUSTRATES SOME
EXAMPLES FOR EACH OF THE ABOVE COMMANDS:

ATTACH TREENAME CKEYD

ATTACHES TO TREENAME AS CURRENT DIRECTORY. NONOWNER

PASSWORDS KAY BE GIVEN. DEFAULT = SET AS HOME DIRECTORY.

EXAMPLE: A <1>MYUFD>MYSUBUFD>BINS

ATTACHES TO THF SUB-UFD 'BINS1 IN THE DIRECTORY-CHAIN
»MYUFD>MYSUBUFD'. THE UFD 'MYUFD' IS SEARCHED FOR IN THE
MFD OF LOGICAL DISK 1. •BINS' BECOMES THE HOME DIRECTORY.

EXAMPLE: A '*>LISTINGS SECRET'

ATTACHES TO THE SUB-UFD 'LISTINGS' IN THE HOME DIRECTORY.
THE SUB-UFD 'LISTINGS' HAS A PASSWORD
'LISTINGS' BECOMES THE HOME DIRECTORY.

OF •SECRET'.

EXAMPLE: A MYUFD>MYSUBDIR>BACKUPS 1/1

ATTACHES TO THE SUB-UFD 'BACKUPS' IN THE DIRECTORY-CHAIN
•MYUFD>MYSUBDIR ' . 'MYUFD' IS IN THE CURRENT DIRECTORY
ATTACHED TO. 'BACKUPS' DOES NOT BECOME THE HOME DIRECTORY.

EXAMPLE: A <REV16>MFD

ATTACHES TO THE MFD OF THE DISK WITH 'REV16' AS ITS VOLUME
NAME AS NONOWNER. THE 'MFD' DOES NOT HAVE A NONOWNER
PASSWORD.

EXAMPLE A <MD16A1>LIB 1/177777

ATTACHES TO THE UFD 'LIB' ON THE DISK WITH 'MD16A1' AS ITS
VOLUME NAME.
DIRECTORY.

THE UFD LIB DOES NOT BECOME THE HOME

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16.2 PAGE 27

BINARY TREENAME

OPENS TREENAME FOR WRITING ON FILE UNIT 3 FOR OUTPUT.
EQUIVALENT TO TO THE COMMAND 'OPEN TREENAME 3 2».

EXAMPLE B MYUFD>MYSUBUFD>TEST.BIN

THE FILE 'TEST.BIN' IS OPENED ON FILE UNIT 3 FOR WRITING IN
THE DIRECTORY-CHAIN 'MYUFD>MYSUBUFD'. ALL MFDS (STARTING
WITH LOGICAL DISK 0) ARE SEARCHED FOR THE UFD NAMED 'MYUFD'.

CLOSE CTRE EN AM ED CFILE-UNITD [FILE-UNIT!

CLOSES TREENAME AND/OR FILE UNITS.

EXAMPLE: C MYUFD>L TEST

THE FILE 'LATEST' IN THE UFD 'MYUFD' IS CLOSED. ALL MFDS
(STARTING WITH LOGICAL DISK 0) ARE SEARCHED FOR THE UFD
NAMED 'MYUFD' .

CNAME TREENAME FILENAME

CHANGES THE LAST NAME IN TREENAME TO FILENAME. REQUIRES
OWNER RIGHTS. THE NEW NAME MUST BE A FILENAME; OTHERWISE
ONE WOULD BE MOVING FILES.

EXAMPLE: CN TOOLS>F0RTRAN>TEST OLDTEST

THE FILE. NAMED 'TEST' IN THE DIRECTORY-CHAIN • T OOLS>FORTRAN'
IS CHANGED TO 'OLDTEST'. ALL MFDS (STARTING WITH LOGICAL
DISK 0) ARE SEARCHED FOR THE UFD NAMED 'TOOLS'.

IX.A.MPLE: CN »MEMOS>CON FI DENTIAL SECRET>CURRENT ' OLD

THE FILE NAMED ' CURRENT' IN THE DIRECTORY-CHAIN
'MEMOS>C0NFIDENTIAL ' IS CHANGED TO 'OLD'. THE SUB-UFD
'CONFIDENTIAL' HAS A PASSWORD OF 'SECRET'. ALL MFDS
(STARTING WITH LOGICAL DISK 0) ARE SEARCHED FOR THE UFD
NAMED 'MEMOS'.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16.2 PAGE ?8

COMINPUT TREENAME CFILE-UNIT1

READS COMMAND INPUT FROM TREENAME INSTEAD OF TERMINAL.

EXAMPLE: CO MYUFD>MYSU6DIR>C_TEST1 33

COMMAND INPUT IS SWITCHED TO THE FILE «C_TEST1« IN THE
DIRECTORY-CHAIN 'MYUFD>MYSUBDIR' ON FILE UNIT 33 (OCTAL),
ALL MFDS (STARTING WITH LOGICAL DISK 0) ARE SEARCHED FOR THE
UFD NAMED 'MYUFD'. NOTE THAT WHILE THE NEXT COMMAND COMES
FROM THE FILE 'C_TEST1', THE ATTACH POINT OF THE PROCESS
REMAINS UNCHANGED.

COMOUTPUT TREENAME

SENDS OUTPUT STREAM TO SPECIFIED TREENAME ON THE COMOUTPUT
FILE UNIT.

EXAMPLE: COMO *>UTOPIA84>TESTRUN

THE OUTPUT STREAM IS SENT TO THE FILE 'TESTRUN' IN THE
DIRECTORY-CHAIN ' *>UTOP IA84'. THl SUB-UFD 'UT0PIA84' IS
CONTAINED IN THE DIRECTORY WHERE HOME WAS MOST RECENTLY SET.

CREATE TREENAME

CREATES A NEW UFD IN THE DIRECTORY SPECIFIED BY TREENAME,

IXA(jPLE: CR »<1>MFD XXXXXX>A CCOUNTS>RE CE IV ABLE »

THE SUB-UFD 'RECEIVABLE' IS CREATED IN THE UFD •ACCOUNTS'
THE UFD 'ACCOUNTS' IS IN THE 'MFD' OF LOGICAL DISK T~, THE
MFD HAS A PASSWORD OF 'XXXXXX*.

DELETE TREENAME

DELETES A FILE OR EMPTY DIRECTORY.

EXAMPLE: DELETF L I ST INGS>TEST.FTN.LST

THE FILE NAMED 'TEST . FTN.LST' IS DELETED FROM THE UFD
'LISTINGS ' . ALL MFDS (STARTING WITH LOGICAL DISK 01 A~RT
SEARCHED FOR THE UFD NAMED 'LISTINGS'.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, RFVISION 16.2 PAGE 29

INPUT TREENAME

OPENS TREENAME FOR READING ON FILE UNIT 1. EQUIVALENT TO
THE COMMAND 'OPEN TREENAME 1 1'.

EXAMPLE: I <*>INVENTQRY>ONHAND>DATA

THE FILE NAMED 'DATA* IN THE DIRECTORY-CHAIN
•INVENTOPY>ONHAND' IS OPENED FOR READING ON FILE UNIT 1.
THE UFD 'INVENTORY' IS SEARCHED FOR IN THE MFD OF THE
CURRENT DISK.

LISTING TREENAME

OPENS TREENAME FOR WRITING ON FILE UNIT 2. EQUIVALENT TO
THE COMMAND 'OPEN TREENAME ? 2'.

EXAMPLE: L <BACKUP>PAYROLL>THIS WEEK

THE FILE NAMED 'THIS_WEEK' IN THE UFD 'PAYROLL* IS OPENED
FOR WRITING ON FILE UNIT 2. THE UFD 'PAYROLL' IS SEARCHED
FOR IN THE MFD OF THE DISK WITH THE VOLUME NAME OF 'BACKUP'.

OPEN TREENAME UNIT KEY

OPENS A TREENAME ON THE SPECIFIED UNIT WITH A DISPOSITION
SPECIFIED PY KEY.

EXAMPLE: 0 MYUFD>MYSUPFD>MYDAT A 1 1

THE FILE 'MYDATA' IN THE DIRECTORY 'MYUFD>MYSUBFD' IS OPENED
ON FILE UNIT 1 FOR READING. ALL MFDS (STARTING WITH LOGICAL
DISK 0) ARE SEARCHED FOR THE UFD NAMED 'KYUFD1.

PHANTOM TREENAME [FILE-UNIT]

RUNS THE SPECIFIED TREENAME AS A PHANTOM USER
ELEMENT IN THE TREENAME IS A COMMAND-INPUT FILE.

THE LAST

EXAMPLE PH *>PRODUCTION>DAILY.CO 52

RUNS THE COMMAND-INPUT FILE »DAILY.C0» IN THE
DIRECTORY-CHAIN »*>PRODUCTION' AS A PHANTOM USER. THE
SUB-UFD 'PRODUCTION' IS CONTAINED IN THE DIRECTORY WHERE
HOME WAS MOST RECENTLY SET. JHE PH M I S ^ S JiOME_UFD_IS
^PRODUCTION.!. FILE UNIT 52 (OCTAL) IS USED AS THE
COMMAND-INPUT FILE UNIT.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16.2 PAGE 30

PROTEC TREENAME COWNER-R1GHTS CNONOWNER-RIGHTS33

SETS PROTECTION RIGHTS ON TREENAME.

EXAMPLE: PRO <OLD>MYUFD>SECRET 0 0

SETS PROTECTION RIGHTS TO THE FILE 'SECRET' IN THE UFD
'MYUFD' TO NO ACCESS FOR BOTH THE OWNER AND NONOWNER. THE
UFD 'MYUFD' IS SEARCHED FOR IN THE MFD OF THE DISK WITH THE
VOLUME NAME OF 'OLD'.

RESTORE TREENAME

RESTORES THE RUNFILE CONTAINED IN TREENAME INTO MEMORY.

_ _ _ _ _ _ _ ____________

RESTORES THE RUNFILE *TEST IN THE MOST RECENTLY SET HOME
DIRECTORY TO MEMORY. THIS IS EQUIVALENT TO THE COMMAND
•REST *TEST'.

RESUME TREENAME CP3 CA3 CEO CX3 CKEYS3

RUNS (RESTORES AND STARTS) THE EXTERNAL PROGRAM CONTAINED IN
TREENAME.

I___EL_: R CMDNCODATE

RUNS (RESTORES AND STARTS) THE EXTERNAL PROGRAM NAMED 'DATE'
IN THE UFD 'CMDNCO'. ALL MFDS (STARTING WITH LOGICAL DISK
0) ARE SEARCHED FOR THE UFD NAMED 'CMDNCO'.

SAVE TREENAME ST ART-ADDRESS END-ADDRESS [A3 CB3 CX3 CKEYS3

SAVFS MEMORY IMAGE/CONTENTS FROM THE SPECIFIED START-ADDRESS
TO END-ADDRESS AS TREENAME. DO NOT USE WITH SEG FORMAT (64V
OR 321) RUNFILES.

EXAMPLE: SA 'MFD XXXXXX>MYUFD>*NEW' 10U 177777

SAVES THE MEMORY IMAGE IN LOCATIONS 100-177777 (OCTAL) AS
THE FILE **NEW» IN UFD 'MYUFD'. THE UFD »MYUFD» IS IN THF
'MFD' OF LOGICAL DISK 0. THE 'MFD' HAS A PASSWORD OF
'XXXXXX'.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, RFVISION 16.2 PAGE 31

SHARE TREENAME SEGMENT-NUMBER CSEGMENT-DESCRIPTOR-WORD3

SHARES TREENAME IN THE SPECIFIED SEGMENT-NUMBER. THIS IS AN
OPERATOR COMMAND, AND MUST BE ISSUED FROM THE SYSTEM
CONSOLE.

EXAMPLE: SHA SYSTEM>UI200Q 2000

THE FILE 'UI2000' IN THF UFD 'SYSTEM1 IS PLACED INTO SEGMENT
2000. ALL MFDS (STARTING WITH LOGICAL DISK 0) ARE SEARCHED
FOR THE UFD NAMED 'SYSTEM'.

3.2 ADDISK COMMAND MODIFICATION [

THE ADDISK COMMAND HAS BEEN EXTENDED TO ALLOW A DISK PARTITION TO
BE SOFTWARE WRITE-PROTECTED.

A DISK IS WRITE-PROTECTED BY SPECIFYING PROTECT IN THE ADDISK
COMMAND AS FOLLOWS:

ADDISK PROTECT DEVN01 [DVN02 ... DVN093

PROTECT MAY ONLY BE SPECIFIED FOR DISKS WHICH ARE ADDED LOCALLY,
AND DOES NOT GOVERN THE RIGHTS OF REMOTELY ADDED DISKS- REMOTELY
ADDED DISKS ASSUME THE WRITE-PROTECTION STATUS OF THE LOCAL
SYSTEM.

THE STATUS OF THE WRITE~PROTECT FEATURE MAY BE CHANGED FOR A
GIVEN PARTITION BY RESPECIFYING THE STARTUP OR ADDISK COMMAND
WITH OR WITHOUT PROTECT.

IF AN SUBSEQUENT ADDISK COMMAND IS ISSUED FOR THE SAME DISK, AND
PROTECT IS NOT SPECIFIED, THE WRITE-PROTECT FEATURE IS DISABLED.
(AN ADDISK PROTECT TO AN ALREADY PROTECTED DISK DOES NOT CHANGE
THE PROTECTION.) IF AN ADDISK PROTECT COMMAND IS ISSUED FOR A
DISK THAT DOES NOT HAVE PROTECTION ENABLED, IT IS IMPORTANT THAT
THE DISK BE SHUTDOWN FIRST, TO INSURE THAT THE DISK IS NOT
INADVERTENTLY WRITTEN UPON.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16.2 PAGE 3?

3.3 LOGOUT COMMAND MODIFICATION

THE LOGOUT COMMAND HAS BEEN MODIFIED SO THAT WHEN 'LOGOUT ALL' IS
SPECIFIED FROM THE SYSTEM CONSOLF (USER 1) THE REMOTE FILE ACCESS
MANAGER (FAM) IS NOT LOGGED CUT IF IT IS A RUNNING PROCESS.

^i_LQQK_CQMMAND_MODIFlCAIION

THE LOOK COMMAND HAS BEEN MODIFIED SO THAT A 'REALLY?' PROMPT IS
ISSUED FOR ANY LOOK COMMAND WHOSE REQUEST IS CONSIDERED TO BE
RISKY OR DANGEROUS TO SYSTEM INTEGRITY. (IF THE LOOK COMMAND
INVOLVES
EXIST, AN
ATTEMPTS

AN ATTEMPT TO
ATTEMPT TO DO A
TO MAP EITHER

DO A FROM FROH A SEGMENT THAT DOES NOT
TO TO A SEGMENT THAT DOES EXISTA OR
SHARED OR STACK SEGMENTS WITH WRITE

PERMISSION, THE COMMAND
SYSTEM INTFGRITY.) A
PROCEED.

IS CONSIDERED RISKY OR DANGEROUS TO
SIMPLE 'YES' WILL ALLOW THE OPERATION TO

3.5 MAXUSR COMMAND MODIFICATION

THE MAXUSR COMMAND HAS BEEN MODIFIED SO THAT THE
VARIABLE MAXUSR IS IGNORED FOR PHANTOMS STARTED
CONSOLE (USER 1) .

VALUE OF THE
FROM THE SYSTEM

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16.2 PAGE 33

3.6 PHANTOM COMMAND MODIFICATION

THE PHANTOM COMMAND HAS BEEN MODIFIED SO THAT THE PRIORITY OF A
SPAWNED PROCESS HAS THE SAME PRIORITY AS THE SPAWNING PROCESS.
IF THE SPAWNING PROCESS IS PROCESS 1 (THE SYSTEM CONSOLE), THE
PRIORITY IS SET TO 1 .

3.7 REMOTE COMMAND

THE REMOTE COMMAND ENABLES USER 1 (THE SYSTEM CONSOLE USER) TO
PERMIT OR DENY ACCESS TO LOCAL FILE SYSTEM DISK PARTITIONS FROM
SPECIFIC OR ALL REMOTE NODES.

REMOTE PERMIT <OPTION>

PERMIT

DENY

PERMITS ACCESS TO SPECIFIC OR ALL LOCAL DISKS BY
SPECIFIC OR ALL REMOTE NODES.

DENY DENIES ACCESS TO SPECIFIC OR ALL LOCAL DISKS BY
SPECIFIC OR ALL REMOTE NODES

OPTIONS CAN BE:

NODENAME DVN01 CDVN02
NODENAME -ALL

DVN093

-NET DVN01 CDVN02
-K'ET -ALL

DVN093

THE FOLLOWING EXAMPLES ILLUSTRATE HOW THIS COMMAND IS USED TO
PERMIT ACCESS TO SPECIFIC OR ALL LOCAL DISKS.

REMOTE PERMIT NODENAME DVN01 CDVN02 ... DVN093

THIS COMMAND PERMITS NODE NODENAME TO STARTUP OR ADDISK ANY OF
THE LOCAL PHYSICAL DISK DEVICES DVNOI THROUGH DVN09. AT LEAST
DVN01 MUST BE SPECIFIED. ALL SPECIFIED LOCAL DISK PARITITIONS
MUST ALREADY BE STARTFD-UP WITH A PREVIOUS ADDISK OR STARTUP
COMMAND.

REMOTE PERMIT NODENAME -ALL

THIS COMMAND PERMITS NODE NODENAME TO STARTUP OR ADDISK ALL
PRESENTLY STARTFD UP LOCAL DISK~PARTITIONS. IT HAS NO EFFECT ON
LOCAL PARTITIONS ADDED AFTER THIS COMMAND IS EXECUTED.

REMOTE PERMIT -NET DVNQ1 CDVN02 ... DVN093

THIS COMMAND PERMITS ALL NETWORK NODES CONFIGURED TO ACCESS THE
SPECIFIED LOCAL DISK PARTITIONS.

REMOTE PERMIT -NET -ALL

THIS COMMAND PFRMITS ALL NETWORK NODES TO ACCESS ALL PRESENTLY
STARTED UP DISK PARITIONS.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMCS IV, REVISION 16.2 PAGE 34

PERMIT AND DENY AFFECT ONLY DISK PARTITIONS ALREADY STARTED UP AT
THE TIME OF THE REMOTE COMMAND. DISKS SHUT DOWN AND STARTED UP
AGAIN WILL GET THE SYSTEM DEFAULT PERMISSIONS UNTIL AN EXPLICIT
REMOTE PERMIT OR REMOTE DENY COMMAND CHANGES THEM. THE SYSTEM
DEFAULT PERMISSIONS ARE DETERMINED FROM THE FILE NETCON WHICH IS
CREATED BY NETCFG. THE REMOTE PERMIT COMMAND WILL NOT
AUTOMATICALLY ADD A DISK TO ANY SYSTEM. THE REMOTE DENY COMMAND
WILL NOT REVOKE A SYSTEM'S EXISTING ACCESS TO A DISK.

li8_STARiyP_C0MMAND_MgDIFICATI0N

THE STARTUP COMMAND HAS BEEN EXTENDED TO PERMIT A DISK TO BE
SOFTWARE WRITE-PROTECTED.

A DISK IS WRITE-PROTECTED BY SPECIFYING PROTECT IN THE STARTUP
COMMAND AS FOLLOWS:

STARTUP PROTECT DVN01 CDVNQ2 ... DVN093

PROTECT MAY ONLY BE SPECIFIED FOR DISKS WHICH ARE STARTED
LOCALLY, AND DOES NOT GOVERN THE RIGHTS OF REMOTELY ADDED DISKS.
REMOTELY ADDED DISKS ASSUME THE WRITE-PRQTECTION STATUS OF THE
LOCAL SYSTEM.

THE STATUS OF THE WR IT E-PR OT ECT FEATURE MAY BE CHANGED FOR A~
GIVEN PARTITION BY RESPECIFYING THE STARTUP OR ADDISK COMMAND
WITH OR WITHOUT PROTFCT.

IF AN SUBSEQUENT STARTUP COMMAND IS ISSUED FOR THE SAME DISK, AND
PROTECT IS NOT SPECIFIED, THE WRITE-PROTECT FEATURE IS DISABLED.
(AN STARTUP PROTECT TO AN ALREADY PROTECTED DISK DOES NOT CHANGE
THE PROTECTION.) IF AN STARTUP PROTECT COMMAND IS ISSUED FOR A
DISK WHICH DOES NOT HAVE PROTECTION ENABLED, IT IS IMPORTANT THAT
THE DISK BE SHUTDOWN FIRST, TO INSURE THAT THE DISK IS NOT
INADVERTENTLY WRITTEN UPON.

INTERNAL COMMAND MODIFICATIONS AND ADDITIONS

PRIMOS IV, REVISION 16-2 PAGE 35

^.CORRECIED.REVlSION.H.l^.lS.g.PEOBLEMS

THE FOLLOWING ARE PROBLEMS WHICH HAVE BEEN CORRECTED FOR REVISION
16 OF PRIMOS. WHERE APPLICABLE, TAR #'S ARE INLCUDED.

CALLS TO SLEEPS FOR LONG PERIODS OF TIME RESULTED IN INACCURATE
DELAYS IF SYSTEM USAGE WAS HEAVY.

4-2_CONFIG_COMB____NEEDED_IN

THE CONFIG COMMAND WAS NOT OPTIONAL IF NETWORKS WERE CONFIGURED.
THE SYSTEM WOULD FAIL TO COLD START.

4i___£_AYED_LOGIN

A USER'S LOGIN COMMAND WAS SOMTIMES DELAYED FOR AS LONG AS ONE
MINUTE.

i^-SECURIIY.PROBLEM

USER-RING (RING 3) PROGRAMS COULD USE THE RING 0 PRIVILEGED
RETURN OF E$BPAS (BAD PASSWORD) FROM ATCH$$. THIS ERROR ALLOWED
USERS TO WRITE A PROGRAM WHICH ITERATED THROUGH ALL POSSIBLE
PASSWORDS IN FINITE AMOUNT OF TIME.

4.5 WRONG LINE NUMBER IN STATUS COMMAND

THE STATUS COMMAND PRINTED THE INCORRECT LINE NUMBER WHEN THE
USER'S AMLC LINE NUMBER WAS GREATER THAN THE NUMBER OF CONFIGURED
TERMINAL USERS. (TAR H 12860)

4i£_AICH$i_PR0BLFM

CALLS TO ATCHSS TO ATTACH TO HOME DIRECTORY FAILED IF THE HOME
DIRECTORY WAS ON A REMOTE DISK AND THE LOGICAL DEVICE ARGUMENT
WAS KSALLD (100000 OCTAL).

i_Z_CARD_READER;PUNCH_PROBLEM

CALLS TO T T C W P C AND TSPMPC (CARD READER-PUNCH) COULD RESULT IN
SPURIOUS 'NO M P C ERROR MESSAGES. (TAR H 25725)

CORRECTED REVISION 15.1, 15.2 PROBLEMS

PRIKOS IV, REVISION 16.2 PAGE 36

4.8 GARBLED COLD START MESSAGE

AT COLD START, THE PRIMOS HEADER MESSAGE COULD SOMETIMES BE
GARBLED DUE TO INCORRECT BAUD RATE SETTING.

4i2_260O_B£liD.j;ON£0iLf

SETTING THE BAUD RATE OF THE SYSTEM CONSOLE TO 9600 BAUD VIA THE
B REGISTER SETTING OF *COLDS CAUSED SYSTEM CRASH DURING COLD
START.

4»lQ_REM0I£_Lg6IN

THE FORCED LOGOUT OF
ANOMALOUS BEHAVIOUR.

A USER WHO WAS REMOTELY LOGGED IN CAUSED

4-ll.R£j?lQlJL£TIACH

AN ATTACH TO A NONEXISTANT UFD ON A REMOTE DISK
RETURNED THE ERROR CODE F$IREM INSTEAD OF E$FNTF.

INCORRECTLY

4.-l£-SYSIEM_fciALIS.

IF THE COMOUTPUT UNIT WAS OPEN, AND THE SYSTEM MESSAGE 'BAD
RTNREC1 WAS ISSUED, THE SYSTEM WOULD HALT IN N1L0CK.

OTHER PROBLEMS RELATED TO THE SYSTEM HANGING IN N1L0CK HAVE BEEN
CORRECTED.

A. 13_L0C_P01NIER.WEAKENING

A USER SUPPLIED LOC POINTER WAS NOT BEING WEAKENED FOR CALLS TO
TSAMLC, TSCMPC, T$LMPC, TSPMPC, AND T$VG.

4 .1 A SCHEDULING

A USER ATTEMPTING TTY
'INTERACTIVE' TIMESLICE.

INPUT VIA «INA 4' FAILED TO GET

4.15 COMINPUT

THE COMINPUT COMMAND I N C O R R E C T L Y T R E A T E D - F I L E N A M E A S T H E
COMINPUT FILE, WHERE "FILENAME" WAS THE NAME OF A FILE.

CO TTY DID NOT CHECK TO SEE IF THE COMINPUT UNIT WAS OTHER THAN
UNIT 6. (TAR tt 25476, 80564)

CORRECTED REVISION 15.1, 15.2 PROBLEMS

PRIMOS I V , REVISION 1 6 . 2 PAGE 37

4i l6_DISK_ASSI6NM£NI

PRIMOS IV
COMMANDS ON

WOULD INCORRECTLY ACCEPT ADDISK
O V E R L A P P I N G D ISK P A R T I T I O N S .

D I S K , AND A S S I G N

4 . 1 ? S E T I M E

THE SETIME COMMAND WOULD FAIL IF A DISK ERROR OCCURRED WHILE
WRITING THE COLD START MESSAGE TO THE LOGREC FILE.

l-i£_LQGLgG.

THE LOGLOG
DOCUMENTED.

DIRECTIVE OF CONFIG DID NOT WORK AS PREVIOUSLY

4.19 UNASS1GN

THE UNASSIGN COMMAND DID NOT WAIT UNTIL THE BUFFER WAS CLEARED
FOR A CARD READER, CARD PUNCH, PAPERTAPE READER/PUNCH, ETC.

l£20_LgGREC_FILE

THE PACKNAME IN THE LOGREC FILE MAY HAVE HAD A NONPRINTING
CHARACTER IF THE NAME HAD AN ODD NUMBER OF CHARACTERS.

4-21_REMQI£_y£D_RIGHIS.

WHEN OPERATING ON A REMOTE DISK, NONOWNERS OF A
ILLEGALLY ALLOWED TO CREATE NEW FILES.

UFD WERE

4.22_MAXS£H

THE MAXSCH
n 24959)

COMMAND INCORRECTLY DEFAULTED TO 0 INSTEAD OF 3 (TAR

4.23 MESSAGE ALL NOW

THE COMMAND 'MESSAGE ALL NOW' COULD HANG THE SYSTEM
LONG PERIODS OF TIME. COMMAND PROCESSING HAS BEEN
THAT THE SYSTEM ONLY WAITS A SHORT PERIOD OF TIME FOR

CONSOLE FOR
CHANGED SO
ROOM IN THE

TTY OUTPUT BUFFERS. IF A MESSAGE CAN NOT BE PLACED IN A BUFFER,
THE SYSTEM CONSOLE USER (OPERATOR) IS INFORMED AS TO WHICH USERS
DID NOT RECEIVE THE MESSAGE. (TAR ft 11324)

CORRECTED REVISION 15.1, 15.2 PROBLEMS

PRIMOS IV, REVISION 16.2 PAGE 38

4 A I 4 _ R E M 0 T E _ P H A N I 0 M

PHANTOMS WHOSE COMMAND FILES WERE ON REMOTE DISKS FAILED TO
LOGIN, AND NO ERROR WAS SENT TO THE SPAWNING PROCESS. THIS
OPERATION NOW RESULTS IN THE ERROR ESIREM (ILLEGAL REMOTE
REFERENCE) IF THE PHANTOM CAN NOT BE STARTED.

^£5_SKS_6DA

THE 'SKS 604' INSTRUCTION (SKIP QN TRANSMITTER READY) ALWAYS
SKIPPED IF THE USER WAS A PHANTOM. THIS PREVENTED PHANTOMS FROM
RUNNING MULTIPLE DEVICES (SERIAL LINE PRINTERS, ETC.) WHICH WERE
CONNECTED TO THE SOC OR OPTION-A CONTROLLER. (TAR ft 20022)

4.26 DELAY

THE DELAY COMMAND RESET TERMINAL CHARACTERISTICS BEFORE ALL OF
THE OUTPUT SUFFER WAS FLUSHED CAUSING SOME CHARACTERS TO BE LOST.
(TAR H 24726)

1=27_X0FF

IF TERMINAL OUTPUT WAS TURNED OFF, AND A USER WAS FORCED OFF
(LOGOUT OR DISCONNECT COMMAND), THAT USER TERMINAL WOULD HANG AND
COULD NOT BE LOGGED OUT. (TAR U 24726)

£A28_REM0IE_AJTACHES_&_SPAS$!

IF SPASSS WAS CALLED WHILE ATTACHED TO A REMOTE UFD, A USER THAT
HAD OWNER PERMISSION HAD THE RIGHTS CHANGED TO THAT OF NONOWNER.
FAM NOW RETAINS THE NEW PASSWORD TO USE IN RE-ATTACHING TO THAT
UFD FOR SUBSEQUENT OPERATIONS.

CORRECTED REVISION 15.1, 15.2 PROBLEMS

PRIMOS IV, REVISION 16.2 PAGE 39

_.___E__I___E__I______6___ER___EMS_

THE FOLLOWING I~S A LIST OF PROBLEMS WHICH WERE CORRECTED AT
REV16.1. WHERE APPLICABLE, TAR NUMBERS ARE INCLUDED.
_ _ _ _ _ _ _ _

CALLS TO FORCEW GAVE SPURIOUS E$IREM.

____________ __J!i___I

RING 3 CALLS (NOT DOSSUB) ARE PROHIBITED FROM OPENING FILE ON~
UNIT 0 (SYSUN - RESERVED FOR SYSTEM USE) AND ON THE HIGHEST UNIT
NUMBER (MUNIT - RESERVED FOR COMOUTPUT).

_______E________I__

THE ERROR MESSAGE "FILE IN USE" WAS GIVEN WHEN THE FILE WAS IN~
FACT NOT IN USE.

______UEIOUS_CHARACIERS„IN_COMOUTPUI_FILE

IF SRCH$$ WAS USED TO CLOSE THE COMOUTPUT FILE INSTEAD OF COMO$$,
THEN THE NEXT COMOUTPUT FILE OPENED COULD HAVE EXTRA CHARACTERS
INSERTED AT THE BEGINNING OF THE FILE.

____IRE_R___________E___I__________I___

TERMINAL OUTPUT WAS FORCED ON IF AN ERROR MESSAGE RESULTED FROM
AN INA OR OTA IN A USER PROGRAM.

5^6_SYSIEM_HANG DURING PglNIER_UNASSI6N

THE SYSTEM WOULD HANG IF THE LINE PRINTER BEING UNASSIGNED WAS
POWERED OFF (TAR #25477).

__Z__R______________-_IE__I_R_

A PROBLEM IN THE LOCATE LOCKING STRATEGY ALLOWED AN OPPORTUNITY
FOR POINTER MIS-MATCHES TO BE CREATED ON THE DISK.

THE DEFAULT VALUE FOR THE MAXSCH COMMAND WAS CORRECTED TO BE
THREE.

--2---------.R-

THE AMLBUF CONFIGURATION PARAMETER FAILED TO SET-UP THE DMQ
BUFFERS CORRECTLY IF THE DEFAULT SIZE WAS CHANGED. ON SOME
SYSTEMS, THE DEFAULT BUFFERS WERE NOT CORRECTLY INITIALIZED.
(TAR #23422, #24788)

CORRECTED REVISION 16.0 PROBLEMS

PRIMOS IV, REVISION 16.2 PAGE 40

5 . 1 0 VERSATEC PRINTER-PLOTTER

PRINT MODE AFTER SIMULTANEOUS PRINT-PLOT MO~DE F A I L E D . T T A F

1 2 0 6 8)

5 J . ! l_SYSC0K>KEYS J tP • 7Z5 ~~~

THE KEYS INSERT F ILE WAS INCORRECTLY FORMATTED. COMMENTS WERE
NOT RECOGNIZED AS SUCH.

CORRECTED REVISION 1 6 . 0 PROBLEMS

PRIMOS I V , REVISION 1 6 . ? PAGE 41

6_C0RRECTED_REVISI0N_16.1_PR0BLEf iS

THE FOLLOWING IS A L IST OF PROBLEMS WHICH WERE CORRECTED AT
REV16.2 BUT NOT AT R E V 1 6 . 1 . WHERE APPLICABLE, TAR NUMBERS ARE
INCLUDED.

6 i l _PAPER_IAPE_READER_aN^EU! iCH

PROCESSES USING PTR OR PUNCH WERE GIVEN A DISPROPORTIONATE SHARE
OF CPU T I M E .

£ .2_SRCH$$_ySING_K$GEIU

CALLS TO SRCH$$ TO OPEN FILES ON REMOTE DISKS WHICH USED THE
SUB-KEY KSGETU (SYSTEM CHOOSES UNIT NUMBER) WOULD HANG FAM.

6 . 3 COMOUTPUT COMMAND

COMOUTPUT COMMAND IGNORED ALL EXCEPT FILENAME I N TREENAME I F
" - O P T I O N " S P E C I F I E D .

£i£_SAVE_AND_RESIORE

ATTEMPTS TO SAVE OR RESTORE MEMORY IMAGES WHICH WERE AN ENTIRE
SEGMENT (0 THROUGH 1 7 7 7 7 7 OCTAL) WOULD NOT WORK. (TAR # 1 5 7 9 1)

£ i5_T$AMLC

CALLS TO T$AMLC TO RETURN STATUS RETURNED INCORRECT INFORMATION.
(TAR #14792) OUTPUT BUFFER EMPTIED TOO SLOWLY. (TAR #23421)

6A6_PRWF$$

PRWF$$ SOMETIMES FAILED TO POSITION FILE CORRECTLY ON LARGE DAM
FILES.

6.7_GARBLEr2_C0LD_STARI_MESSAGE

IT AN ASRATE PARAMETER WAS NOT INCLUDED IN THE CONFIG COLD START
FILE, THE SYSTEM TERMINAL COULD BE SET TO THE WRONG BAUD RATE.
OUTPUT WAS MISSING OR GARBLED. (TAR #14514, #80695)

6- 8_MAX_REM0IE_USERS_.EXCEEDED

ATTACH HOME TO A LOCAL DISK FROM A REMOTE CURRENT ATTACH POINT
FAILED TO INVALIDATE ATTACH POINT ON REMOTE SYSTEM.

6i9_C0MINP_FILE_E0F

THE ERROR MESSAGE "COMINP FILE EOF" WAS RETURNED IF ANY ERROR WAS
ENCOUNTERED WHILE READING FROM A COMMAND FILE. THE CORRECT ERROR
MESSAGE IS NOW PRINTED. (TAR #80698)

CORRECTED REVISION 16.1 PROBLEMS

PRIMOS IV, REVISION 16.2 PAGE 42

6.10 SYSTEM HANG

IF THE AMLC TRANSPARENT INPUT PROTOCOL WAS USED AMD THE INPUT
BUFFER WAS NOT EMPTIED BY THE PROGRAM WHILE A LARGE AMOUNT OF
INPUT WAS DONE, THE SYSTEM COULD HANG.

6.11 LOST INPUT

TERMINAL INPUT WAS SOMETIMES LOST
WHEN USING BLOCK MODE TERMINALS.

THE PROBLEM WAS MOST APPARENT

CORRECTED REVISION 16.1 PROBLEMS

PRIMOS IV, REVISION 16.? PAGE 43

Z^CONFIG_=.A_iggL_FgR_CONFIGURING_PRIROS

XNOTE: FOR CONVENIENCE, THIS SECTION HAS BEEN REPEATED CIN LARGE
XPART) FROM THE PRIMOS REVISION 15 DOCUMENT.

VAT REVISION 15 OF PRIMOS, IT BECAME POSSIBLE TO SPECIFY CONFIG
XPARAMETERS AS A SERIES OF CONFIG DIRECTIVES. THE DIRECTIVES ARE
XKEPT IN A DATA FILE IN CMDNCO AND ARE PROCESSED BY THE PRELOADER
\TO SET UP MOST SYSTEM PARAMETERS. MOST CONFIGURATION PARAMETERS
\MAY STILL BE SPECIFIED VIA THE OLD-STYLE REGISTER SETTINGS, BUT
XTHE CHANGE TO THE NEW-STYLE IS RECOMMENDED. NEW CONFIGURATION
UACILITIES ARE AVAILABLE ONLY BY SPECIFYING SYSTEM PARAMETERS AS
\CONFIG DIRECTIVES.

XNOTE : CONFIG, ITS DATABASES, ANY DATABASES IT ACCESSES, AND
XERROR MESSAGES ARE SUBJECT TO CHANGE AT ANY REVISION OF PRIMOS.

\THIS SECTION INCLUDES THE UPDATES MENTIONED FN SECTION T, AND
VINDICATES WHICH CONFIG DIRECTIVES ARE NO LONGER SUPPORTED,
XCHANGES TO THIS SECTION HAVE BEEN MARKED WITH REVISION BARS.

XTHE INFORMATION CONFIG PROCESSES WITH RESPECT TO NETWORKS HAS
XBEEN REDUCED TO A VERY SIMPLE NET ON DIRECTIVE. ALL OTHER
\NETWORK CONFIGURATION INFORMATION IS NOW PROCESSED BY NETCFG.
\(SEE SEPARATE DOCUMENT ON NETCFG.) THE CONFIG DIRECTIVES FAM,
XMYNAME, AND RLOGIN ARE NO L0N6ER SUPPORTED, AND THE OLD STYLE
XCONFIG COMMAND NO LONGER PERMITS A <NODE> TO BE SPECIFIED. SOME
XNEW CONFIG DIRECTIVES HAVE ALSO BEEN ADDED AT REVISION 16.

Zil_OVERVIEW_gF_PRELOADER_ACIigNS

AS IS DONE CURRENTLY, THE PRELOADER ATTACHES TO CMDNCO AND LOOKS
FOR THE FILE C_PRMO. IF THE FILE EXISTS, IT IS OPENED FOR
COMMAND INPUT; IF IT DOESN'T, THE 'PLEASE ENTER CONFIG' PROMPT
IS ISSUED. THE FIRST EXECUTABLE DIRECTIVE IS READ (FROM THE
TERMINAL OR FROM C_PRMO), AND A 'CO TTY' IS ISSUED. THE
DIRECTIVE IS EXAMINED TO ENSURE IT IS A CONFIG DIRECTIVE.

N.B. : NOTE THAT COMMENTS — LINES STARTING WITH '*' OR •/*« MAY
NOW PRECEDE THE CONFIG COMMAND IN C_PRMO.

AT THIS POINT, THE NEW PRELOADER MAKES AN ADDITIONAL CHECK FOR
THE KEYWORD '-DATA' AS THE FIRST NAME ON THE CONFIG COMMAND. IF
THIS KEYWORD IS PRESENT, THE SECOND NAME FOLLOWING THE COMMAND IS
TAKEN AS THE NAME OF A CONFIGURATION DATA FILE. THE FILE IS
OPENED FOR INPUT, AND CONFIGURATION DIRECTIVES ARE PROCESSED AS
DESCRIBED BELOW. A NEW-STYLE CONFIG COMMAND APPEARS AS:

CONFIG -DATA <CONFIGURATION-DATA-FILENAME>

NOTE: WHILE NO RESTRICTIONS ARE PLACED ON"
<CONFIGURATION-DATA-FILENAME> — THE NAME OF THE CONFIGURATION
DATA FILE — IT IS SUGGESTED THAT THE NAME CONFIG BE ADAPTED AS A
DEFACTO STANDARD.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

file:///CONFIG
file:///THIS
file:///NETWORK

PRIMOS IV, REVISION 16.2 PAGE 44

7.2 CONFIGURATION DIRECTIVES

FOLLOWING THE ABOVE SEQUENCE, THE PRELOADER EITHER HAS READ AN
OLD-STYLE CONFIG COMMAND OR HAS THE NAME OF A DATA FILE
CONTAINING NEW-STYLE CONFIGURATION DIRECTIVES. THE FOLLOWING
DESCRIBES
ORDER.

ALL POSSIBLE CONFIGURATION DIRECTIVES IN ALPHABETICAL

CORRESPONDENCE TO CURRENT CONFIG
APPROPRIATE. DIRECTIVES (WHICH
LITERAL STRINGS ARE SHOWN IN UPPER

PARAMETERS IS NOTED WHERE
CANNOT BE ABBREVIATED) AND

CASE. SYNTACTIC VARIABLES ARE
"AND ENCLOSED IN ANGLE BRACKETS (<>) .
ARE ENCLOSED IN SQUARE BRACKETS (C3).

IF THE DIRECTIVE IS NOT SPECIFIED OR IF A

LOWER-CASE
PARAMETERS

WHICH OCCUR

SHOWN IN
OPTIONAL
DEFAULTS
PARAMETER IS OMITTED, ARE UNDERLINED. THE CONFIGURATION
DIRECTIVES CAN APPEAR IN THE CONFIGURATION DATA FILE IN ANY ORDER
WITH THE EXCEPTION OF THE 'GO' DIRECTIVE, WHICH MUST BEJTHE LAST
DIRECTIVE IN THE CONFIGURATION DATA FILE

ALL NUMERIC PARAMETERS ARE IN OCTAL UNLESS OTHERWISE SPECIFIED.

AL!DEV_:;z_SPEC.IFY_&LIERNAIfc_PA£I^

ALTDEV <DVNO> C<RECORDS>3

<DVNO> IS THE DEVICE NUMBER OF THE bTSK TO BE USED AS AF
ALTERNATE PAGING DEVICE. A <DVNO> OF 0 IS NOW ACCEPTABLE.
THIS DIRECTIVE CORRESPONDS TO THE OLD-STYLE CONFIG PARAMETER
4/<DVN0>.

THE OPTIONAL PARAMETER <RECORDS> SPECIFIES THE SIZE OF THE
ALTERNATE PAGING DEVICE. <RECORDS> IS INTERPRETED AS A 16-BIT
POSITIVE INTEGER AND MUST BE GREATER THAN ZERO. IF THE
<RECORDS> PARAMETER IS ALSO SPECIFIED ON THE PAGDEV DIRECTIVE,
THE SUM OF THE TWO <RECORDS> PARAMETERS IS USED TO CALCULATE
NSEG — THE TOTAL NUMBER OF SEGMENTS IN THE SYSTEM.

NOTE: THE ALTERNATE PAGING DEVICE WILL BE USTD FOR PAGING
ONLY IF THE SIZE OF THE PRIMARY PAGING DEVICE (PAGDEV) IS SET
WITH THE <RECORDS> PARAMETER — SEE DESCRIPTION OF PAGDEV
DIRECTIVE.

AMLBUF_--_SET_TERMINAL_I/0_BUFFER_SIZES

AMLBUF <LINE> [<IBUFSZ>D C<OBUFSZ>J C<DMQSIZ>3

THE TERMINAL INPUT
<LINE> ARE SET TO THE

AND OUTPUT BUFFERS FOR AMLC LINE NUMBER
NUMBER OF WORDS GIVEN BY <IBUFSZ> AND

<OBUFSZ>. FOR SYSTEMS WITH DMQ AMLC CONTROLLERS, <DMQSIZ> CAN
BE USED TO SPECIFY THE SIZE OF THE DMQ BUFFER FOR THE LINE.
OMITTING <IBUFSZ>, <OBUFSZ>, OR <DMQS1Z> OR SPECIFYING 0 WILL
RESULT IN
I/O BUFFERS

NO CHANGE TO THE DEFAULT BUFFER SIZE.
TOO LARGE* MESSAGE WILL BE PRINTED IF

A 'TERMINAL
THE TOTAL

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 45

SIZE OF THE I/O BUFFERS (NOT INCLUDING THE DMQ BUFFER SIZES)
IS WADE TO EXCEED 32K WORDsT A 'BAD LINE # IN AMLBUF CMND'
MESSAGE WILL BE PRINTED IF <LINE> IS LESS THAN 0 OR GREATER
THAN THE NUMBER OF LINES CONFIGURED FOR THE SYSTEM. A 'BAD
DMQ AMLC CONFIGURATION' MESSAGE WILL BE PRINTED IF A DMQ
BUFFER SIZE THAT IS NOT A POWER OF 2 IS SPECIFIED OR IF THE
TOTAL SIZE OF THE I/O BUFFERS PLUS DMQ BUFFERS EXCEEDS 64K
WORDS. THE DEFAULT BUFFER SIZES ARE 200,, 300, AND 40 (DECIMAL
128, 192, 32) .

AsgAiE_=r.S£I_Siai£M_£atiSQLE_BAUfi_EAI£

ASRATE <CTRL>

<CTRL> SPECIFIES THE BAUD RATE OF THE SYSTEM CONSOLE AS
FOLLOWS:

110 110 BAUD
1010 300 BAUD
2010 1200 BAUD
3410 9600 BAUD

THIS DIRECTIVE IS EQUIVALENT TO (AND WILL OVERRIDE) THE
\ B-REGISTER SETTING OF *COLDS. THE DEFAULT VALUE IS 110. IF
\ THE ASRATE DIRECTIVE IS OMITTED AND THE SYSTEM INCLUDES A SOC
\ CONTROLLER THE SPEED OF THE SYSTEM CONSOLE (USER 1) WILL BE
\ THE SAME AS IT WAS UNDER PRIMOS II. THIS IS NOT TRUE IF THE
\ SYSTEM HAS AN OPTION-A CONTROLLER.

ASRBUF_rz_^EI_AS£.I£EMlNAL_I/Q_BUF£ER,&IZ£

ASRBUF <LINE> C<IBUFSZ>3 C<0BUFSZ>3

THE TERMINAL INPUT AND OUTPUT BUFFERS FOR THE ASR ARE SET To"
THE NUMBER OF WORDS GIVEN BY <IBUFSZ> AND <OBUFSZ>. OMITTING
<IBUFSZ> OR <OBUFSZ> OR SPECIFYING 0 WILL RESULT IN NO CHANGE
TO THE DEFAULT BUFFER SIZE. A 'TERMINAL I/O BUFFERS TOO
LARGE' MESSAGE WILL BE PRINTED IF THE TOTAL SIZE OF THE I/O
BUFFERS (INCLUDING AMLC BUFFERS) EXCEEDS 32K WORDS. A 'BAD
LINE ft IN ASRBUF CMND' MESSAGE WILL BE PRINTED IF <LINE> IS
NOT 0. DEFAULT BUFFER SIZES ARE 200 AND 300 (DECIMAL 128 AND
192).

CQMDEy_rr_SPECIFY_CQMMAND„DEVIC_E

COMDEV <DVNO>

<DVNO> SPECIFIES THE DEVICE ON WHICH THE SYSTEM DTD CMDNCO
RESIDES. THE COMMAND DEVICE MUSI BE SPECIFIED, EITHER WITH
THE COMDEV DIRECTIVE OR WITH ft" CONFIG DIRECTIVE. THIS
DIRECTIVE CORRESPONDS TO CONFIG PARAMETER 2/<DVN0>.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 46

CONFIG_--_SPECIFY_CONFIGURAI^

~\ CONFIG <NTUSR> <PAGDEV> <COMDEV> C<OTHER PARMS>3

\ WITH THE EXCEPTION OF <NODE> (WHICH IS NO LONGER A VALID
\ OLD-STYLE CONFIG DIRECTIVE), AN OLD-STYLE CONFIG DIRECTIVE CAN
\ BE INCLUDED ANYWHERE IN A CONFIGURATION DATA FILE* (IT WILL

NOT, HOWEVER, BE PRINTED ON THE SYSTEM CONSOLE AS IS THE
CONFIG COMMAND IN C_PRMO UNLESS 'TYPOUT YES 1 IS IN EFFECT —
SEE TYPOUT DIRECTIVE.) A COMPLETE SPECIFICATION OF PARAMETERS
FOR THE OLD-STYLE CONFIG COMMAND IS AS FOLLOWS:

0/<NTUSR> NUMBER OF TERMINAL USERS
1/<PAGDEV> PAGING DEVICE
2/<COMDEV> COMMAND DEVICE
3/<MAXPAG> NUMBER PAGES PHYSICAL MEMORY TO USE
4/<ALTDEV> ALTERNATE PAGING DEVICE
5/<NAMLC> NUMBER ASSIGNABLE AMLC LINES
6/<NPUSR> NUMBER PHANTOM USERS
7/<NRUSR> NUMBER REMOTE USERS (NEW AT REV 15)
10/<SMLCON> NON-ZERO => ENABLE SMLC

DI5LOG_ri_SEI_DISC0NNECI_LgGOUI_OPII0N

DISLOG YES
NO

IF 'YES' IS SPECIFIED, A LOGOUT WILL BE PERFORMED WHEN
DISCONNECT OCCURS ON AN AMLC LINE. THIS DIRECTIVE IS USED TO
SET THE FIGCOM VARIABLE DLOGOT. THE DEFAULT SETTING DOES NOT
LOGOUT ON DISCONNECT.

£BASE.z-_SPE£IFl_SIiIEM_DEFAULI_ESAS£_£,HAE.AC.I£R

ERASE C<CHAR>3 C<OCTAL-VAL>3

<CHAR> IS USED TO SET THE SYSTEM DEFAULT CHARACTER-ERASE
CHARACTER. THE CHARACTER CAN OPTIONALLY BE SPECIFIED AS
<OCTAL-VAL>. FOR EXAMPLE:

ERASE A IS EQUIVALENT TO:
ERASE 301

THIS DIRECTIVE IS USED TO SET THE FIGCOM VARIABLE DEFERA
(DEFAULT VALUE IS " • ») .

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 47

\F&M — SPECIFY FAM NETWORK CONFIGURATION

\ FAM <NODENAME> <NETTYPE>

\ FAM IS NO LONGER A SUPPORTED CONFIG DIRECTIVE AND ITS USE IS
\ ILLEGAL. USE THE NETCFG COMMAND TO SPECIFY FAM INFORMATION.
\ (SEE SEPERATE DOCUMENT DESCRIBING NETCFG.)

\FILUNI ~ SPECIFY NUMBER OF SYSTEM FILE UNITS

\ FILUNT <RSVUNT> <MAXUNT> <TOTUNT>

\ THE FILUNT DIRECTIVE IS USED TO DEFINE THE NUMBER OF FILE
\ UNITS AVAILABLE TO A USER, AND TO PRIMOS. <RSVUNT> DEFINES
\ THE MAXIMUM NUMBER OF FILE UNITS GUARRANTEED TO BE AVAILABLE
\ TO EACH USER. <MAXUNT> DEFINES THE MAXIMUM NUMBER OF UNITS
\ ANY ONE USER MAY HAVE OPEN AT ONE TIME. <TOTUNT> DEFINES THE
\ TOTAL NUMBER OF UNITS THAT BE SIMULTANEOUSLY OPEN IN THE
\ SYSTEM. IF FILUNT IS NOT SPECIFIED IN THE CONFIGURATION FILE,
\ THE DEFAULTS ARE AS FOLLOWS:

\ <RSVUNT> 16
\ <HAXUNT> 64
\ <TOTUNT> 2048

\ THE MAXIMUM TOTAL NUMBER OF UNITS THAT MAY BE OPEN
\ SIMULTANEOUSLY BY ALL USERS IS 2048. <TOTUNT> MAY BE USED TO
\ REDUCE THIS NUMBER. BY REDUCING THE TOTAL NUMBER OF FILE UNIT
\ TABLE ENTRIES IN THE SYSTEM, THE EFFECT WILL BE TO REDUCE THE
\ AMOUNT OF VIRTUAL MEMORY USED BY THE FILE SYSTEM. PRIMOS DOES
\ ATTEMPT TO KEEP THE ACTUAL NUMRER OF FILE UNIT TABLE ENTRIES
\ IN USE TO A MINIMUM IN ORDER TO KEEP DOWN THE SIZE OF THE
\ WORKING SET. FOR EACH CONFIGURED USER, THREE FILE UNITS ARE
\ ALLOCATED AT COLD-START.

\ THE MAXIMUM NUMBER OF UNITS THAT ANY ONE USER MAY HAVE OPEN
\ SIMULTANEOUSLY IS 64. OF THE 64 UNITS, 2 ARE RESERVED FOR
\ EXCLUSIVE USE BY THE SYSTEM. <MAXUNT> MAY BE USED TO REDUCE
\ THIS NUMBER, BUT NOT BELOW 2. THE HIGHEST NUMBERED FILE UNIT
\ AVAILABLE IS "<MAXUNT> - 1". IT MAY BE DESIRABLE IN SPECIAL
\ CIRCUMSTANCES TO RESTRICT <MAXUNT> TO 16, THUS PROVIDING
\ COMPATABILITY WITH PRIMOS II AND PRIMOS III.

\ THE NUMBER OF FILE UNITS GUARANTEED TO BE AVAILABLE TO EACH
\ USER IS 16. <RSVUNT> MAY BE USED TO INCREASE OR DECREASE THIS
\ QUANTITY. SINCE THERE ARE NOT ENOUGH FILE UNIT TABLE ENTRIES
\ TO PERMIT ALL USERS TO HAVE 64 FILE UNITS OPEN SIMULTANEOUSLY
\ (64*64=4096), SRCHS$ MAY RETURN THE ERROR CODE ESFUIU (ALL
\ UNITS IN USE). IF MULTIPLE COOPERATING PROCESSES (USERS)
\ DEPEND ON HAVING A CERTAIN NUMBER OF FILh UNITS AVAILABLE, THE
\ POSSIBILITY OF A DEADLOCK EXISTS. <RSVUNT> SHOULD BE
\ SPECIFIED SO THAT THERE ARE SUFFICIENT UNITS AVAILABLE TO
\ PREVENT DEADLOCK. THAT IS, <TOTUNT> MUST BE GREATER THAN OR

CONFIG - A TOOL FOR CONFIGURING PRIMOS

file:///FILUNI

PRItfOS IV, REVISION 16.2 PAGE 48

\ EQUAL TO <RSVUNT>*N, WHERE "N" IS THE NUMBER OF
\ USERS, AND <TOTUNT> IS LESS THAN OR EQUAL TO 2048.

CONFIGURED

GO_rz_i!!!iiRK_END_OF_CQNFIGyRAIIQN_FILE

GO

THE GO DIRECTIVE MARKS THE END OF THE CONFIGURATION DATA FILE
AfiY SUBSEQUENT LINES IN THE CONFIGURATION FILE ARE IGNORED
THE CONFIGURATION DATA FILE MUST INCLUDE A GO DIRECTIVE.

KILL_ZZ-SP££IFI SYSTEM DEFAULI_£1LL_.£HAB,AC_IER

KILL r.<CHAR>3 E <0 CT AL-V AL >1

<CHAR> IS USED TO SET THE SYSTEM DEFAULT LINE-KILL CHARACTER.
THE CHARACTER CAN OPTIONALLY BE SPECIFIED AS <OCTAL-VAL>.
THIS DIRECTIVE IS USED TO SET THE FI6C0M VARIABLE DEFKIL. THE
DEFAULT WOULD BE SPECIFIED AS

KILL ? OR EQUIVALENTLY:
KILL 277

LQGLOG_-=_ALLOW_LOGINS_WHILE_LOGGED_IN

LOGLOG YES
NO

IF 'YES' IS SPECIFIED, THE LOGIN COMMAND WILL BE PERMITTED
WHILE A USER IS LOGGED IN. IF
COMMAND WILL BE INHIBITED WHILE A
DIRECTIVE IS USED TO SET THE

•NO' IS SPECIFIED, THE LOGIN
USER IS LOGGED IN. THIS
FIGCOM VARIABLE LOGOVR. THE

\ DEFAULT SETTING ALLOWS LOGINS WHILE LOGGED IN. THE EXTERNAL
\ LOGIN PROGRAM (IF PRESENT) IS RUN ONLY ONCE IF A USER LOGS IN
\ WHILE ALREADY LOGGED IN (AND LOGLOG YES HAS BEEN SPECIFIED FOR

CONFIGURATION)

LOGMSG_--_PRINT_LOHNZLQGOUT_MES§AG£S

LOGMSG YES
NO

THIS DIRECTIVE CONTROLS THE PRINTING OF LOGIN AND LOGOUT
MESSAGES ON THE SYSTEM CONSOLE. 'YES' IS THE DEFAULT, WHICH
CAUSES THE MESSAGES TO BE PRINTED. SPECIFYING *N0» WILL CAUSE
THE MESSAGES TO BE SUPPRESSED. THIS DIRECTIVE IS USED TO SET
THE FIGCOM VARIABLE NLGPRT.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 49

___R_C_-__SPECIFY_MAXJ^
_ _ _ _ _ _ _ _ _ _

<VAL>, IF POSITIVE, SPECIFIES THE NUMBER OF WORDS IN THE
LOGREC FILE. WHEN LOGREC EXCEEDS <VAL> WORDS, THE 'EXCEEDING
QUOTA ON LOGREC1 MESSAGE IS PRINTED AS EACH NEW ENTRY IS ADDED
TO LOGREC. SPECIFYING AN <VAL> OF 0 WILL INHIBIT THE QUOTA
CHECK; NO MESSAGE WILL EVER BE PRINTED. SPECIFYING A
NEGATIVE <VAL> WILL SUPPRESS ALL ATTFMPTS TO WRITE TO THE
LOGREC FILE. (THIS WILL AVOID DISK WRITE ERRORS IF RUNNING ON
A WRITE-PROTECTED DISK.) THE DEFAULT VALUE IS 10000 (4096
DECIMAL). THIS DIRECTIVE IS USED TO SET THE VARIABLE LRQUOT
IN FIGCQM.

LOUTQW_ —_SPECIFY,_lNA,£IiyiIY-LOGOUT QUANTUM

LOUTQM <MINS>

THIS DIRECTIVE SPECIFIES THE NUMBER OF MINUTES OF INACTIVITY
TO BE ALLOWED TO PASS BEFORE A USER IS AUTOMATICALLY LOGGED
OUT. THE DEFAULT VALUE IS 1750 (1000 DECIMAL) MINUTES. THIS
DIRECTIVE IS USED TO SET THE FIGCOM VARIABLE LOUTQM- <MINS>
MUST BE GREATER THAN ZERO.

___E_G„___E_C_FY_NU_BER^

MAXPAG <NPAGES>

<NPAGES> IS THE NUMBER OF PAGES OF PHYSICAL MEMORY TO VALIDATE
FOR USE. THE DEFAULT VALUE IS 40Q (256 DECIMAL). THIS
DIRECTIVE CORRESPONDS TO THE OLD-STYLE CONFIG PARAMETER
3/<NPAGES>. (MEMORY VALIDATION OCCURS AT COLD START. EACH
PAGE IS 1024 WORDS.)

\MYNA_E_-z_SPECIIY_NETWORK_NAME_0f_LOCAL^NODE

\ MYNAME <NODENAME>

\ MYNAME IS NO LONGER A SUPPORTED CONFIG DIRECTIVE AND ITS USE
\ IS ILLEGAL. USE THE NETCFG COMMAND TO SPECIFY <NODENAME>
\ INFORMATION. (SEE SEPERATE DOCUMENT DESCRIBING NETCFG.)

_A__C_--_SPE CI FY„UMBER_AS SI GN ABLE_AML£_L_NE S

NAMLC <NLINES>

<NLINES> SPECIFIES THE NUMBER OF ASSIGNABLE AMLC LINES IN THE
SYSTEM. THIS DIRECTIVE CORRESPONDS TO THE OLD-STYLE CONFIG
PARAMETER 5/<NLINES>. THE DEFAULT VALUE IS 0.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 50

\NEI_rr_SPECIFY_N§IWORK_C0NFIGURATION

_ _ _ _ _ _

\ THIS DIRECTIVE SPECIFIES THAT NETWORKS ARE TO BE CONFIGURED,
\ IF THIS DIRECTIVE IS NOT SPECIFIED, THEN NETWORKS WILL NOT BE
\ CONFIGURED. THE PREVIOUS QUALIFIERS OF THIS DIRECTIVE ARE NO
\ LONGER SUPPORTED AND ARE ILLEGAL. (SEE SEPARATE DOCUMENT ON
\ NFTCFG.)

N£ySR_zz_SP£_IFY_NUMBER_OF_PHANIQM_U_ER_

NPUSR <N>

<N> SPECIFIFS THE NUMBER OF PHANTOM USERS TO BE CONFIGURED.
IT IS ADDED TO NTUSR AND NRUSR TO DETERMINE THE TOTAL NUMBER
OF USERS ON THE SYSTEM. THIS DIRECTIVE CORRESPONDS TO THE
OLD-STYLE CONFIG PARAMETER 6/<N>. THE DEFAULT IS 0.

NRUSR — SPECIFY NUMBER REMOTE USERS

NRUSR <N>

<N> SPECIFIES THE NUMBER OF PROCESSES TO BE RESERVED FOR
REMOTE LOGINS (THE DEFAULT NUMBER IS 0) . THE NRUSR DIRECTIVE
ALLOWS UP TO <N> CONCURRENT REMOTE USERS TO CONNECT TO THIS
SYSTEM USING THE -ON KFYWORD QF THE LOGIN COMMAND (MAXIMUM
VALUE IS 40 — DECIMAL 32). THE NUMBER OF REMOTE USERS IS
ADDED TO NPUSR AND NTUSR TO DETERMINE THE TOTAL NUMBER OF
USERS ON THE SYSTEM.

\.-£G_-_.SPECIFY_NUMBER_AVAILABL£_SEG_EN

\ NSEG <NUMBER>

\ THIS DIRECTIVE SETS THE TOTAL VIRTUAL ADDRESS SPACE FOR A
\ SYSTEM (THE VARIABLE NSEG IN SEGMENT 4) . <NUMBER> SPECIFIES
\ THE NUMBER OF PAGE MAPS TO BE ALLOCATED DURING SYSTEM
V INITIALIZATION. THERE MAY BE FEWER PAGE MAPS AVAILABLE THAN
\ THE NUMBER OF POSSIBLE USER SEGMENTS. THUS, ALTHOUGH A 64
\ USER SYSTEM CAN ALLOW 64 POSSIBLE SEGMENTS TO BE ADDRESSED BY

EACH USER, THERE IS A LIMIT OF <NUMBER> SEGMENTS
ACTUALLY BE IN USE BY ALL USERS AT ANY GIVEN TIME.
ALLOWS A MAXIMUM OF 320 DECIMAL (500 OCTAL) PAGE
DEFAULT VALUE OF <NUMBER> IS 192 DECIMAL (30U OCTAL).

WHICH CAN
THE SYSTEM
MAPS. THE

IF THE AMOUNT OF PAGING SPACE SPECIFIED IN THE PAGDEV AND
ALTDEV DIRECTIVES WILL NOT PERMIT NSEG SEGMENTS TO BE
ALLOCATED, NSEG IS REDUCED TO CONFORM WITH THE AMOUNT OF
PAGING SPACE AVAILABLE. (SEE ALSO THE ALTDEV AND PAGDEV
DIRECTIVES.)

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.? PAGE 51

NTUSR — SPECIFY NUMBER OF TERMINAL USERS

NTUSR <N>

<N> SPECIFIES THE NUMBER OF TERMINAL USERS TO BE CONFIGURED,
THE NUMBER OF USERS MUSI BE SPECIFIED, EITHER WITH THE NTUSR
DIRECTIVE OR WITH THE CONFIG COMMAND. THIS DIRECTIVE

\ CORRESPONDS TO THE OLD-STYLE CONFIG PARAMETER 0/<N>. NTUSR
\ MUST RE GREATER THAN 1 AND LESS THAN 65. NTUSR IS ADDED TO
\ NPUSR AND NRUSR TO DETERMINE THE TOTAL NUMBER OF USERS ON THE
\ SYSTEM.

\NUSEG ~ SET NUMBEB_QF_US£S-S£SMEilIS-EER USER

NUSEG <NUMBER>

\ THIS DIRECTIVE SETS THE SIZE OF THE VIRTUAL ADDRESS SPACE FOR
\ EACH USER BY SETTING THE SIZE OF EACH PROCESS' DESCRIPTOR
\ TABLE 2. <NUMBER> SPECIFIES (IN OCTAL) THE NUMBER OF SEGMENTS
\ AVAILABLE TO EACH USER PROCESS. THE PRIMOS IV SYSTEM RESERVES
\ ROOM FOR A TOTAL OF 4096 USER SEGMENTS. THEREFORE, THE
\ PRODUCT OF <NUMBER> TIMES THE TOTAL NUMBER OF USERS (INCLUDING
\ PHANTOMS AND REMOTE LOGIN USERS) CANNOT EXCEED 4096. THE
\ DEFAULT VALUE OF <NUMBER> IS 32 DECIMAL C40 OCTAL).

PAGDEV — SPECIFY PAGING DEVICE AND SIZE

PAGDEV <DVNO> C<RECORDS>3

<DVNO> SPECIFIES THE PHYSICAL DISK ON WHICH PAGING IS TO TAKE
PLACE. THE PAGING DEVICE MUST BE SPECIFIED, EITHER WITH THE
PAGDEV DIRECTIVE OR WITH THE CONFIG COMMAND. THIS DIRECTIVE
CORRESPONDS TO THE OLD-STYLE CONFIG PARAMETER 1/<DVNO>.

THE OPTIONAL PARAMETER <REC0RDS> IS USED TO SPECIFY THE SIZE
OF THE PAGING DISK. IT IS INTERPRETED AS A 16-BIT POSITIVE
INTEGER AND MUST BE GREATER THAN ZERO. SPECIFYING <RECORDS>
HAS TWO CONSEQUENCES. FIRST, <REC0RDS>, POSSIBLY IN
CONJUNCTION WITH A <RECORDS> SPECIFICATION ON AN ALTDEV
DIRECTIVE, IS USED TO LIMIT NSEG — THE TOTAL NUMBER OF
SEGMENTS IN THE SYSTEM. SECOND, IF AN ALTERNATE PAGING DEVICE
HAS BEEN SPECIFIED (ALTDEV), <RECORDS> WILL DEFINE THE POINT
AT WHICH PAGE
THE ALTERNATE

SPACE ALLOCATION SWITCHES
PAGING DEVICE.

FROM THE PRIMARY TO

NOTE: <RECORDS> CAN BE AS SMALL AS 1 TO FORCE ALMOST ALL
PAGING TO OCCUR ON THE ALTERNATE PAGING DEVICE. THE PRIMARY
DEVICE, HOWEVER, WILL ALWAYS BE USED TO PAGE THE SEGMENTS USED
BY PRIMOS IV (SEGMENT NUMBERS 0-12 AND USER 1»S SEGMENT 6000).

CONFIG - A TOOL FOR CONFIGURING PRIMOS

file:///NUSEG

PRIMOS I V , REVISION 1 6 . 2 PAGE 52

£REEM_r i -SPECIFY_Ny£lBER_0F_PAG£S - . I2_.PREPAGE

<N> SPECIFIES THE NUMBER OF PAGES TO PREPA6E OUT WHEN A PAGE
FAULT OCCURS. THE DEFAULT VALUE I S 3 . THIS DIRECTIVE SETS
THE VARIABLE PREPGK IN PAGCOM.

\ _ _ _ _ _ _ _ Z _ _ _ _ _ C I F Y _ _ E _ Q I _ _ L O G I _ _ N

"\ RLOGIN <NODENAME> <NETTYPE>

\ RLOGIN IS NO LONGER SUPPORTED AS A CONFIG DIRECTIVE AND ITS
\ USE IS ILLEGAL. USE THE NETCFG COMMAND TO SPECIFY REMOTE
\ LOGIN INFORMATION. (SEE SEPERATE DOCUMENT DESCRIBING NETCFG.)

__L__JC_ZZ_SP£CIFY_FILE_SYSTE^

RWLOCK <VAL>

<VAL> IS USED TO SET THE FIGCOM VARIABLE RWLOCK — THE
SYSTEM-WIDE FILE READ/WRITE LOCK. VALID VALUES OF <VAL> ARE:

0 - 1 READER OR 1 WRITER (WRITER HAS EXCLUSIVE CONTROL)
1 - N READERS OR 1 WRITER (WRITER HAS EXCLUSIVE CONTROL)
3 - N READERS AND 1 WRITER
5 - N READERS AND N WRITERS

THE DEFAULT SETTING OF RWLOCK IS 1.

~\ NOTE: MANY SURSYSTFMS (SUCH AS SPOOL, CX, ETC.) DO NOT
\ PERMIT MULTIPLE WRITERS.

i?!LC--_ENABLE_AND_C_N^^

SMLC CNTRLR <CTRLR-NUMBER> <DEVADR>
SMLC SMLCNN <CTRLR-NUMBER> <LINE~NUMBER>

SMLC DIRECTIVES ARE USED TO ENABLE AND CONFIGURE SMLC LINES.
SPECIFYING 'ON1 ENABLES THE SMLC IN THE DEFAULT CONFIGURATION.
THIS CORRESPONDS TO THE OLD-STYLE CONFIG SPECIFICATION 10/1.
THE DEFAULT VALUE LEAVES THE SMLC DISABLED.

THE SMLC CNTRLR FORM IS USED TO SPECIFY THE PHYSICAL DEVICE
NUMBER(S) OF THE SMLC CONTROLLERS. <CTRLR-NUMBER> IS 0 OR 1;
<DEVADR> IS THE PHYSICAL DEVICE ADDRESS OF THE SPECIFIED
CONTROLLER NUMBER. DEFAULT VALUES FOR CONTROLLER ADDRESSES
ARE CONTROLLER 0 AT 50 AND CONTROLLER 1 UNDEFINED.

THE SMLC SMLCNN FORM IS US~ED TO MAP LOGICAL CINE NUMBERS
(SMLC00-SMLC03) ONTO PHYSICAL CONTROLLERS AND LINE NUMBERS.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

file:///_______Z_____CIFY__E_QI__LOGI__N

PRIMOS IV, REVISION 16.2 PAGE 53

<CTRLR-NUMIBER> IS AS FOR THE THE SFSLC CNTRLR DIRECTIVE;
<LINE-NUfnBER> IS THE PHYSICAL LINE NUMBER QN THE CONTROLLER
FROM 0 TO 3. THE DEFAULT VALUES MAP SMLC00-SMLC03 ONTO
CONTROLLER 0, PHYSICAL LINES 0-3.

IXPOyi_Z=_CONIROL_PR,INn
_ _ _ _ _ _ _ _

NO

PRINTING OF THE CONFIGURATION DIRECTIVES ON THE SYSTEM CONSOLE
IS UNDER THE CONTROL OF THE TYPOUT DIRECTIVE. SPECIFYING
'YES*WILL CAUSE THE DIRECTIVES TO BE PRINTED AS THEY ARE
PROCESSED. THE DEFAULT OR ANY OTHER SPECIFICATION WILL CAUSE
PRINTING OF THE DIRECTIVES TO BE SUPPRESSED. (SEVERAL TYPOUT
DIRECTIVES CAN BE USED TO PRINT SELECTED CONFIGURATION
DIRECTIVES.)

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 54

Zi3_PRIM0S_IV_INIIIA4IZATI0N_ERR0R_MrfSSAGES

THE FOLLOWING LISTS ALL ERROR MESSAGES GENERATED BY THE PRIMOS IV
PRELOADER ('PRIMOS') AND THE PRIMOS IV AND NETWORK INITIALIZATION

\SEQUENCES. THE MAJORITY OF THE CONFIG MESSAGES ARE FATAL, AND
\CAUSE CONFIGURATION TO TERMINATE. ANY ERROR MESSAGES WHICH DO
\NOT COME FROM THE PRELOADER ('PRIMOS'), REQUIRE THAT PRIMOS II BE
\BOOTED AGAIN FROM THE CONTROL PANEL (I.E., START OVER FROM THE
\BEGINNING).

7.3.1 PRELOADER ('PRIMOS') ERROR MESSAGES

<FILE-SYSTEM-ERROR-MESSAGE> CMDNCO (PRIMOS)

A. FILE SYSTEM ERROR WAS ENCOUNTERED BY THE PRELOADER WHILE
ATTEMPTING TO ATTACH TO CMDNCO.

<FILE-SYSTEM-ERROR-MESSAGE> C PRMO (PRIMOS)

A FILE SYSTEM ERROR (OTHER THAN FILE NOT FOUND) WAS
ENCOUNTERED BY THE PRELOADER WHILE ATTEMPTING TO OPEN THE
FILE C PRMO FOR COMMAND INPUT.

FIRST COMMAND MUST BE CONFIG

THE COMMAND TYPED IN RESPONSE TO THE 'PLEASE ENTER CONFIG1

PROMPT OR THE FIRST EXECUTABLE COMMAND IN C PRMO IS NOT THE
EXTERNAL COMMAND CONFIG.

<FILE-SYSTEM-ERROR-MESSAGE> <CONFIG-FILE> (PRIMOS)

A FILE SYSTEM ERROR WAS ENCOUNTERED BY THE PRELOADER WHILE
ATTEMPTING TO OPEN THE CONFIGURATION FILE <CONFIG-FILE>.

\ MISSING NTUSR, PAGDEV, OR COMDEV

\ THE CONFIGURATION DATA FILE DID NOT SPECIFY THESE REQUIRED
\ PARAMETERS.

ILLEGAL PAGDEV

THE DEVICE SPECIFIED FOR PAGING IS NOT A LEGAL PAGING
DEVICE.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

file:///SEQUENCES
file:///CAUSE
file:///BOOTED
file:///BEGINNING

PRIMOS IV, REVISION 16.2 PAGE 55

USE <DVNO> FOR PAGING?

THE DISK <DVNO> HAS BEEN SPECIFIED AS THE PAGING DEVICE,
BUT IS FORMATTED AS A STANDARD PRIMOS DISK. A REPLY OF
'YES' IS REQUIRED TO ENABLE PAGING ACTIVITY ON <DVNO>.

ILLEGAL COMDEV

THE DEVICE SPECIFIED FOR THE COMMAND DEVICE IS NOT LEGAL.

ILLEGAL ALTDEV

THE DEVICE SPECIFIED AS THE ALTERNATE PAGING DEVICE IS NOT
LEGAL.

<FILE-SYSIEM-ERROR-MESSAGE> PRNNNN (PRIMOS)

A FILE SYSTEM ERROR WAS ENCOUNTERED BY THE PRELOADER WHILE
ATTEMPTING TO OPEN OR READ THE INDICATED PRNNNN FILE.

END OF FILE. MISSING ' GO ' C W D (PRIMOSJ

THE CONFIGURATION DATA FILE DOES NOT INCLUDE A GO DIRECTIVE
AS REQUIRED.

TPIOS ERROR:

AN I/O ERROR OCCURRED WHILE PRELOADING THE PAGING DEVICE.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 56

7.3.2 PRIMOS IV INITIALIZATION ERROR MESSAGES

NTUSR+NPUSR+NRUSR TOO BIG (AINIT)

THE NUMBER OF TERMINAL PLUS PHANTOM PLUS REMOTE USERS
EXCEEDS THE MAXIMUM NUMBER OF CONFIGURABLE USERS.

NRUSR INVALID (AINIT)

THE NUMBER OF REMOTE USERS SPECIFIED BY AN NRUSR DIRECTIVE
EXCEEDS THE MAXIMUM NUMBER OF CONFIGURABLE REMOTE USERS
(40, DECIMAL 32).

\ NTUSR, NPUSR, OR NRUSR INVALID (AINIT)

\ T H E VALUE Of NTUSR, NPUSR, OR NRUSR IS INCORRECT

SEEK FAILURE ON PAGDEV (AINIT)

THE INITIAL SEEK TO CYLINDER 0 ON THE PAGING DEVICE FAILED

SEEK FAILURE ON ALTDEV (AINIT)

THE INITIAL SEEK TO CYLINDER 0 ON THE ALTERNATE PAGING
DEVICE FAILED.

<FILE-SYSTEM-MESSAGE> CAN'T ATTACH TO CMDNCO (AINIT)

A FILE SYSTEM ERROR WAS ENCOUNTERED WHILE ATTEMPTING TO"
ATTACH TO CMDNCO FOR USER 1.

BAD CONFIG COMMAND: <XXXXXX> (AINIT)

THE DIRECTIVE <XXXXXX> IN THE CONFIGURATION DIRECTIVE FILE
IS NOT A RECOGNIZED CONFIGURATION DIRECTIVE.

BAD <CMND> PARAMETER (AINIT)

ONE OR MORE OF THE PARAMETERS SPECIFIED
CONFIGURATION DIRECTIVE <CMND> IS INVALID.

F O R T H E

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 57

BAD LINE § IN AMLBUF CMND (AINIT)

AN AMLBUF DIRECTIVE SPECIFIES AN INVALID LINE NUMBER.

BAD DMQ AMLC CONFIGURATION (AINIT)

A DMQ BUFFER SIZE IN AN AMLBUF DIRECTIVE WAS TOO LARGE OR
NOT EQUAL TO A POWER OF 2.

BAD LINE ft IN ASRBUF CMND (AINIT)

AN ASRBUF DIRECTIVE SPECIFIED AN INVALID LINE NUMBER.

FILUNT INVALID (AINIT)

THF FILUNT DIRECTIVE SPECIFIES INCORRECT INFORMATION FOR
PROPER CONFIGURATION.

TERMINAL I/O BUFFERS TOO LARGE (AINIT)

THE TOTAL SIZE OF THE TERMINAL I/O BUFFERS EXCEEDS 32K
WORDS.

SMLC CTRLR # OUT OF RANGE (AINIT)

AN SMLC DIRECTIVE SPECIFIES AN INVALID CONTROLLER NUMBER

SMLC LINE # OUT OF RANGE (AINIT)

AN SMLC DIRECTIVE SPECIFIES AN INVALID LINE NUMBER.

RESTART PLEASE

THIS MESSAGE APPEARS FOLLOWING ANY ERROR MESSAGE PRINTED BY
THE PRIMOS IV INITIALIZATION LOGIC (AINIT). THE SYSTEM
WILL HALT THE LOCATION BOOTU_ IN SEGMENT 6. PRIMOS II MUST
BE RELOADED. THE OFFENDING DIRECTIVE IN THE CONFIGURATION
DATA FILE MUST BE CORRECTED.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIWOS IV, REVISION 16.2 PAGE 58

\7.3.3 NETWORK INITIALIZATION ERROR MESSAGES

NETWORK NOT CONFIGURED (AINIT)

THIS MESSAGE IS NO LONGER ISSUED.

<FILE-SYSTEM-ERROR-MESSAGE> NETCON (NETFIG)

A FILE SYSTEM ERROR HAS OCCURRED WHILE OPENING OR READING
THE NETWORK CONFIGURATION FILE.

BAD NETWORK CONFIGURATION FILF FORMAT (NFTFIG)

THE NETWORK CONFIGURATION FILE HAS AN ILLEGAL FORMAT.
RECREATE THE NETWORK CONFIGURATION FILE USING THE MOST
RECENT VERSION OF NETCFG.

NO TABLE SYSGEN'D FOR RING H <N> (NETFIG)
\ NO TABLE SYSGEN'D FOR IPC #<N> (NETFIG)
\ NO TABLE SYSGEN'D FOR SMLC #<N> (NETFIG)

THERE ARE TOO MANY NODES OF THE SPECIFIED LINE TYPE.
RECREATE THE NETWORK CONFIGURATION FILE SPECIFYING FEWER
NODES OF THAT TYPE.

TOO MANY NETWORK NODES
ONLY <N> NODES ALLOWED (NETFIG)

THERE ARE TOO MANY TOTAL NODES CONFIGURED. RECREATE THE
NETWORK CONFIGURATION FILE SPECIFYING FEWER TOTAL NODES

WARNING — <REVIS10N TEXT> NETWORK CONFIGURATION FILE (NETFIG)

THE NETWORK CONFIGURATION FILE WAS CREATED FOR A PREVIOUS
VERSION OF THE OPERATING SYSTEM. IF THERE ARE NO
SUBSEQUENT ERRORS THEN NETWORKS HAVE BEEN CONFIGURED
SUCCESSFULLY. IN ANY CASE THE NETWORK CONFIGURATION FILE
SHOULD BE RECREATED WITH THE MOST RECENT VERSION OF NETCFG.

CONFIG - A TOOL FOR CONFIGURING PRIMOS

PRIMOS IV, REVISION 16.2 PAGE 59

8_MAPGEN_:r_A_I00L_£OR_BUI LDING_PRIMOS__IV

INTRODUCTION

THE MAPGEN TOOL IS A UTILITY PROGRAM EMPLOYED TO BUILD THE
PRIMPS IV OPERATING SYSTEM. THIS UTILITY TAKES INFORMATION
AVAILABLE FROM THE SYSTEM LOAD (PERFORMED USING SEG) AND
CONSTRUCTS THE INITIAL PAGING MAPS, SEGMENT DESCRIPTORS, AND
OTHER DATA NECESSARY TO THE PAGING MANAGEMENT WITHIN THE
SYSTEM. THE UTILITY WILL ALSO BUILD THE INITIAL COLD-START
R-MODF OBJECT FILE THAT IS EXECUTED WHEN BOOTING THE SYSTEM.

NOTE: MAPGEN, ITS DATABASES,
ERROR MESSAGES ARE SUBJECT TO
PRIMOS.

ANY DATABASES IT
CHANGE AT ANY

ACCESSES, AND
REVISION OF

CONVENTIONS

TWO CONVENTIONS ARE ADOPTED IN THIS SECTION FOR THE NOTATION
WHICH DESCRIBES THE DIRECTIVES.
ALL NUMERIC VALUES SPECIFIED TO THE
BASED, AND Z) DIRECTIVES MAY BE

THESE CONVENTIONS ARE: 1)
MAPGEN PROGRAM ARE OCTAL
ABBREVIATED TO A LEFT-MOST

UNIQUE STRING WHICH IS UNDERLINED IN THE SYNTAX DEFINITIONS.

OPERATION

THE MAPGEN PROGRAM BUILDS THE
INFORMATION FROM DIRECTIVES
INFORMATION AVAILABLF FROM THE

INITIAL PAGING DATABASE WITH
SUPPLIED BY THE USER AND OTHER
SYSTEM LOAD. THE DIRECTIVES

THAT THE USER MAY SUPPLY ARE OF THREE BASIC TYPES:

A) SEGMENT DESCRIPTIONS
B) INFORMATION
C) SUPPORT

STORE

EACH OF THESE THREE TYPES OF DIRECTIVES ARE DISCUSSED
SECTIONS WHICH FOLLOW.

IN THE

8.1 SEGMENT DESCRIPTION DIRECTIVES

THE SEGMENT DESCRIPTION DIRECTIVES TELL
ABOUT THE INITIAL SEGMENTS AVAILABLE IN
SYSTEM. THE USER MUST PROVIDE ALL THIS

THE MAPGEN UTILITY
THE PRIMOS OPERATING
INFORMATION BEFORE

USING ANY OF THE OTHER TYPES OF DIRECTIVES (WITH THE EXCEPTION
OF THE QUIT AND TABLE DIRECTIVES). THE USER FIRST ESTABLISHES
A SEGMENT TO BE DEFINED. ONE DOES THIS BY USING THE SEGMENT
DIRECTIVE WHOSE SYNTAX IS GIVEN BELOW

MAPGEN - A TOOL FOR BUILDING PRIMOS IV

PRIMOS IV, REVISION 16.2 PAGE 60

SEGMENT <SFGNO> <FILE>

THE <SEGNO> ARGUMENT IS THE NUMBER OF THE SEGMENT BEING
DEFINED. THE <FILE> ARGUMENT IS THE TREENAME OF A R-MODE
OBJECT FILE TEMPLATE WHICH IS TO BE INITIALLY LOADED INTO THE
SPECIFIED SEGMENT. IF NO OBJECT FILE IS TO BE LOADED, USER
MUST SPECIFY AN ASTERISK (*) IN PLACE OF THE <FIL£> ARGUMENT.

THE EFFECT OF
PAGE-tfAP FOR

THE SEGMENT DIRECTIVE IS TO CAUSE ALLOCATION OF
THIS SEGMENT. IF A <FILE> ARGUMENT WHICH IS NOT

AN ASTERISK IS GIVEN, THE PAGES DEFINED WITHIN THE LOAD RANGE
OF THE R-MODE OBJECT FILE ARE DEFINED IN THE PAGE-MAP AS BEING
REFERENCABLE AND PRELOADED. ALL PAGES OUTSIDE OF THE OBJECT
FILE RANGE
PLACE OF
THE SEG TO

WILL BE UNREFERENCABLE. THE USE OF AN ASTERISK IN
THE <FILE> ARGUMENT WILL CAUSE ALL OF THE PAGES OF
BE UNREPLACABLE. EACH OF THE ATTRIBUTES ASSOCIATED

WITH PAGES WITHIN THE SEGMENT BEING DEFINED MAY
USING THE ATTRIBUTE MODIFIERS DESCRIBED BELOW.

BE ALTERED

TO PROVIDE FOR SPECIAL CHARACTERISTICS OF SOME SEGMENTS IN THE
OPERATING SYSTEM (E.G., PAGES 'WIRED' TO MEMORY), A SET OF
DIRECTIVES MAY APPEAR AFTER THE SEGMENT DIRECTIVE. THESE
DIRECTIVES ARE CALLED ATTRIBUTE MODIFIERS.
DIRECTIVE APPLIES ONLY TO THE SEGMENT DEFINED BY
SEGMENT DIRECTIVE. THE DIRECTIVES ALL CONTAIN

EACH SUCH
THE PREVIOUS
AN ADDRESS

RANGE WITHIN THE SEGMENT
ARGUMENT IS GIVEN BELOW:

THE BNF SYNTAX OF A <RANGE>

<RANGE>
<FADDR>
<LADDR>

<FADDR> <LADDR> \ <FADDR> <LADDR> <OFFSET> \ *
<SYMBOL> \ <NUMBER> \ SLOW
<SYMBOL> \ <NUMBER> \ $HIGB

<OFFSET> = <NUMBER>

THE IDEA OF A <RANGE> ARGUMENT IS THAT IT INDICATE THE LOWER
AND UPPE
TO APPLY.
FOR WHI

R BOUN
THE

CH TH

DS OF PA
<FADDR>
IS MODI

GES FO
ARGUME
FIER

R WHI
NT SP
APPL1

CH TH
ECIF1
ES.

E AT
ES
THE

TRIBUT
THE F

<LAD

E MODI
IRST
DR> A

FIER IS
ADDRESS
RGUMENT

SPECIFIES
A P P L I E S .
(I . E . , AL

THE L
THE

PHANUM

AST ADDR
<SYMROL

ERIC STR

ESS PL
> ARG
ING) F

US_ON
UMFNT
ROM T

E FOR
MAY

HE LO

WH
BE
AD.

ICH T
ANY EX
THE E

HIS M
TERNAL
F F E C T

ODIFIER
SYMBOL

OF THE
<SYMBOL>
SYMBOL IS
ADDRESSES

ARGUM
USED.

FOR

ENT IS
THE ST
THE B

THAT
RINGS
EGININ

THE
SLOW

G AN

ADDR
AND

D TH

ESS
SH

E E

ASSOCI
IGH R
ND (.

ATED W
EPRESE
PLUS

ITH THE
NT THE

ONE),
RESPECTIV
PREVIOUS
MAY BE A

ELY, 0
SEG ME

VALUE

F THE R
NT DIRE
WHICH IS

-MODE
CTIVE.

ADDE

OBJE
TH

D TO

CT F
E OPT

THE

I L E
10 NA

<L

SPECI
L <OFF
ADDR>

FIED
SET> A
ARGUM

IN THE
RGUMENT
ENT IN

DETERMINI
THE RANGE
DIRECTIVE

NG TH
INDIC
IS TO

E END 0
ATES THA
BE USED

F THE
T THE
FOR T

RANGE
RANGE
HIS D

. SP
FROM

IRECT

ECIF
THE
IVE

YING A
PREVI

ALSO.

N ASTE
OUS M

RISK AS
ODIFIER

THE ATTRIBUTF MODIFIER DIRECTIVES AND THEIR MEANING ARE LISTED
BELOW. THESE DIRECTIVES MAY APPEAR IN ANY ORDER WITHIN THE
SCOPE OF THE SEGMENT DIRECTIVE
ADDITION, IF THE MEANING OF ONE

FOR WHICH THEY APPLY. IN
MODIFIER CONTRADICTS THE

MAPGEN - A TOOL FOR BUILDING PRIMOS IV

PRIMOS I V , REVISION 1 6 . 2 PAGE 61

MEANING OF A MODIFIER WHICH HAS ALREADY APPEARED FOR ANY GIVEN
RANGE, ONLY THE MEANING OF THE LAST MODIFIER SHALL APPLY.

NOTE: THE SCOPE OF A SEGMENT DIRECTIVE IS TERMINATED BY THE
OCCURENCE OF ANY DIRECTIVE WHICH IS NOT AN ATTRIBUTE
MODIFIER.

RESIDE — SPECIFY RANGE IN COLD-START MODULE

RESIDE <RANGE>

THE SPECIFIED RANGE IS RESIDENT IN THE COLD-START R-MODE
OBJECT FILE.

WI£I_i:-SPECIFI_RANGE_LQCKED_I^^

WIRE <RANGE> -OR- LOCK <RANGE>

THF SPECIFIED RANGE IS RESIDENT IN THE COLD-START R-MODE
OBJECT FILE AND THE RESPECTIVE WIRE-BITS OF THE PAGE-MAP
ARE TURNED ON.

Q!iE_3=_SPECIFY_IDENTICAL_VIRIUAL/PHYSICA.L_ADDRE^

ONE <RANGE>

THE •SPECIFIED RANGE IS RESIDENT IN THE COLD-START R-MODE
OBJECT FILE AND IT IS PLACED AT SUCH A LOCATION IN THAT
FILE SUCH THAT BOTH THE VIRTUAL- AND PHYSICAL-ADDRESSES ARE
IDENTICAL.

PAGE — SPECIFY RANGE FOR PAGING SPACE

PAGE <RANGE>

THF SPECIFIED RANGE IS ALLOCATED PAGING SPACE ON THE DISK
AND THE 'NO COPY'-BIT IN THE PAGE-MAP IS TURNED ON.

£^PII_Z=_SPECIFY_RANGE_FOR_Ng_PAGING_SPACE

EMPTY <RANGE>

THE SPECIFIED RANGE IS NOT ALLOCATED ANY PAGING SPACE ON
THE DISK.

MAPGEN - A TOOL FOR BUILDING PRIMOS IV

PRIMOS IV, REVISION 16.2 PAGE 6?

LOAD — SPECIFY RANGE FOR PRELOADING

LOAD <RANGE>

THE SPECIFIED RANGE IS ALLOCATED PAGING SPACE ON THE DISK
AND THE 'NO COPY'-BIT IN THE PAGE-MAP IS TURNED OFF
INDICATING THAT THE RANGE IS PRELOADED ON THE DISK.

SHARE_rr_SP££I£Y_RANGE_NOI_CACHEABLE

SHARE <RANGE>

THF SPECIFIED RANGE WILL HAVE THE HARDWARE SHARE-BIT IN THE
PAGE-MAP
CACHEABLE

TURNED ON INDICATING THAT THE MEMORY IS NOT

8.2 INFORMATION STORE DIRECTIVES

THE INFORMATION STORE DIRECTIVES CAUSE SOME INFORMATION GIVEN
BY THE SEGMENT DESCRIPTION DIRECTIVES TO BE STORED WITHIN THE
R-MODE OBJECT FILE TEMPLATES USED IN PRELOADING THE PAGING
DISK. THE USER MUST SPECIFY A LOCATION FOR EACH OF THESE
DIRECTIVES THAT DETERMINES WHERE THE DATA IS TO BE STORED,
THE BNF SYNTAX OF THE <LOCATION> ARGUMENT IS GIVEN BELOW.

<LOCATION> ::= <SYMBOL> \ <ADDRESS> <SEGNO>

THE <SYMBOL> ARGUMENT MAY BE ANY SYMBOL THAT
USING THE TABLE DIRECTIVE (I.E., ANY EXTERNAL

WAS RECOGNIZED
SYMBOL NAME).

THE USE OF THE <ADDRESS> AND <SEGNO> ARGUMENTS SPECIFIES AN
OFFSET WITHIN A SEGMENT AND A SEGMENT NUMBER WHERE THE
INFORMATION IS TO BE STORED.

EACH OF THESE DIRECTIVES WILL CAUSE ONLY
INFORMATION THAT HAS BEEN SPECIFIED TO BE

THE AMOUNT OF
STORED, THAT IS,

ONLY PART OF THE DATA-BASE FOR A PARTICULAR DIRECTIVE IS
STORED. HENCE THE DIRECTIVE WILL MODIFY ONLY AS MUCH OF A
DATA-BASE IS AS DEFINED BY THE SEGMENT DESCRIPTION DIRECTIVES
AND NO MORE. THIS ASSUMES THAT THE USER HAS INITIALIZED THE
REMAINDER OF THE DATA-BASES TO THE APPROPRIATE VALUES AND THAT
SUFFICIENT SPACE EXISTS IN THE DATA-BASE FOR STORING THE
DEFINED INFORMATION

IN EACH OF THE DIRECTIVES, THE DATA IS UPDATED
TTTF" R-MODE OBJECT FILE. THIS OBJECT FILE IS

GIVEN IN THE <FILE> ARGUMENT SPECIFIED IN
DIRECTIVE FOR THE SEGMENT NUMBER ASSOCIATED WITH

WITHIN AN
THAT SAME^S

THE SEGMENT
THE LOCATION.

IF AN ASTERISK WAS SPECIFIED FOR THE <FILE> ARGUMENT OR THE
SEGMENT WAS NOT DEFINED, AN ERROR MESSAGE IS ISSUED. WHEN
<SYMBOL> IS SPECIFIED AS THE LOCATION, MAPGEN WILL DETERMINE
THE SEGMENT NUMBER FROM THE SYMBOL TABLE.

MAPGEN - A TOOL FOR BUILDING PRIMOS IV

PRIMOS IV, REVISION 16.2 PAGE 63

EACH OF THE INFORMATION STORE DIRECTIVES IS DISCUSSED BELOW.
THE HMAP (HARDWARE MAP) DIRECTIVE MUST APPEAR BEFORE ANY OF
THE OTHER DIRECTIVES GIVEN IN THIS LIST SINCE THE LOCATION
SPECIFIED IN THIS DIRECTIVE IS OF IMPORTANCE TO THE OTHER
DIRECTIVES.

EJgAP-- SPECIFY LOCATION FOR PAGE MAPS

HMAP <LOCATI0N>

THE INITIAL PAGE-MAPS (HMAP, THE HARDWARE MAP, AND LMAP,
THE LOGICAL ADDRESS MAP) FOR THE SYSTEM ARE STORED AT THE
SPECIFIED LOCATION; THE FORMAT OF THE PAGE-MAPS IS
COMPATIBLE WITH THE THEN CURRENT DEFINITION OF THE MAPS.

MH3AP_ir.SPEClFI_LOCAI10N_FOS_MWAP

MMAP <LOCATION>

THE INITIAL MMAP (MFMORY UTILIZATION MAP) FOR THE SYSTEM IS
STORED AT THE SPECIFIED LOCATION.

SDW_-r-SPECIFI_LOCAIIOM_FOR_SDW_IABL£

SDW <LOCATION> <GROUP>

THE INITIAL SDW TABLE FOR THE SYSTEM IS STORED AT THE
SPECIFIED LOCATION. THE ADDITIONAL <6R0UP> ARGUMENT AFTER
THE RANGE APPEARS WHICH DETERMINES WHICH SDW GROUP IS TO BE
STORED. THE ARGUMENT MUST BE A 0, 1, 2 OR 3 AND CAUSES SDW
DATA FOR SEGMENT RANGES 0-1777, 2000-3777, 4000-5777 AND
6000-7777, RESPECTIVELY, TO BE STORED. THE DIRECTIVE WILL
PRESERVE THE PER-RING ACCESS INFORMATION IN THE INDIVIDUAL
SDWS AND WILL CAUSE THE FAULT-BIT TO BE TURNED OFF. THE
PHYSICAL-ADDRESS FOR THE PAGE-MAP IS STORED WITHIN THE SDW
BASED ON THE LOCATION GIVEN IN THE HMAP DIRECTIVE DESCRIBED
ABOVE.

PTUSEG — SPECIFY LOCATION FOR PTUSEG ARRAY

PTUSEG <LOCATION>

THF INITIAL PTUSEG ARRAY FOR THE SYSTEM IS STORED AT THE
SPECIFIED LOCATION. THE OWNER FOR THE SEGMENTS IS GIVEN AS
THF SUPERVISOR.

MAPGEN - A TOOL FOR BUILDING PRIMOS IV

PRIMOS IV, REVISION 16.2 PAGE 64

8.3 SUPPORT DIRECTIVES

THE SUPPORT
EITHER GIVE

DIRECTIVES
OR RECEIVE

ARE SUPPLIED TO ALLOW THE USER TO
ADDITIONAL INFORMATION ABOUT THE MAPGEN

BUILD OPERATION. THE
TABLE DIRECTIVE) MUST
DESCRIPTION DIRECTIVES

DIRECTIVES (bllTH THE EXCEPTION OF THE
BE SPECIFIED AFTER THE SEGMENT
LISTED ABOVE. THE DIRECTIVES ALONG

WITH THE SYNTAX AND SEMANTICS OF EACH ARE LISTED BELOW,

IABLE.rr-SE££IFY_WHERE_FIRST_SYMBOLS_AR£_2BIAINED

TABLE <FILE>

THIS DIRECTIVE CAUSES THE FIRST SET
FROM THE <FILE> ARGUMENT, WHICH

OF SYMBOLS TO BE READ
MAY BE A TREENAME. THE

FILE IS ASSUMED TO BE A SE6 LOAD MAP. MAPGEN WILL READ THE
SYMBOLS FOR ECBS, COMMON BLOCKS AND OTHER SYMBOLS. FOR
SYMBOLS THAT REPRESENT AN ECB, THE ADDRESS OF THE ECB
ITSELF IS USED, NOT THE PROCEDURE ADDRESS. USE OF A SYMBOL
WHICH REPRESENTS AN ECB WILL CAUSF A WARNING MESSAGE TO BE
ISSUED. THIS DIRECTIVE MUST BE SPECIFIED PRIOR TO USE OF
ANY SYMBOL
DIRECTIVES

AND MAY APPEAR BEFORE THE SEGMENT DESCRIPTION

COLDS — SPECIFY NAME OF COLD-START FILE

COLDS <FILE> <SAVE-REGS>

THIS DIRECTIVE CAUSES THE COLD-START R-KODE OBJECT FILE TO
BE BUILT AND SAVED AS THE TREENAME GIVEN IN THE <FILE>
ARGUMENT. THE <SAVE-REGS> ARGUMENT REPRESENTS A NOTATION
FOR THE RE6ISTER VECTOR CONTENTS OF THE OBJECT FILE. THIS
ARGUMENT MAY BE A STRING OF OCTAL VALUES WHICH REPRESENT
THE INITIAL BOUNDS AND REGISTER CONTENTS. THE ORDER AND
MEANING OF THESE ARGUMENTS ARE IDENTICAL TO THAT OF THE
DOSSUB SAVE COMMAND.

QyiI_rr_SPECIFY_TERMINAIION_gF_MAPGEN

QUIT

THIS DIRECTIVE CAUSES THE MAPGEN PROGRAM TO TERMINATE AND
RETURN TO THE PRIMOS COMMAND LEVEL. THE NUMBER OF ERRORS
AND WARNINGS ARE PRINTED.

MAPGEN - A TOOL FOR BUILDING PRIMOS IV

PRIMOS IV, REVISION 16.2 PAGE 65

MA£.ZZ-SPECIFl_ERINIING_OF_SEGWENI/£OLDrSIARI_MAPS

THIS DIRECTIVE CAUSES THE SEGMENT MAP AND COLD-START
RESIDENT MAP TO BE PRINTED. THESE MAPS GIVE ATTRIBUTES OF
EACH SEGMENT BY ADDRESS. ADDITIONAL STATISTICS ABOUT THE
NUMBER OF PAGES WIRED AND PAGING DISK RECORDS USED ARE ALSO
PRINTED.

£U!!!P_"_SPECIFY_PEINIING_gF^^

DUMP

THIS DIRECTIVE CAUSES THE DATA DEFINED WITHIN THE HMAPS AND
LMAPS TO BE PRINTED. IT IS CONSIDERED A DEBUG DIRECTIVE
ON LY .

8.A MAPGEN EXAMPLE

THE FOLLOWING IS AN EXAMPLE OF HOW MAPGEN IS USED TO BUILD A COLD
START MODULE. (THE EXAMPLE IS TAKEN FROM THE FILE C COLD IN
PRIAOO.)

*
* BUILD PAGE MAPS AND CREATE *COLDS MEMORY IMAGE.

* THIS FILE CONTAINS THE DIRECTIVES FOR THE *MAPGEN PROGRAM
* FOR GENERATING PRIMOS IV REV 16 - SINGLE 64 USER VERSION.
*
*

FILMEM ALL /* INITIALIZE "
R *MAPGEN
*
TABLE M_PRMOS
•*•*•**••*

* SEGMENT 00 * CONTAINS I/O WINDOWS, DVDISK, CONTROL BLOCKS.

SEGMENT 0 PROODO
EMPTY 0 177777 /* MAKE ALL RE FE RENCABLE . . .
LOAD SLOW $HIGH /* ASSURE MODULE HAS PAGE SPACE,
WIRE SEGO AMLQCB /* I/O WINDOWS, DVDISK.
EMPTY SEGO AMLQCB
***•**••**••*•**
* SEGMENT 01 * CONTAINS ASSOCIATIVE BUFFERS.
•*• **•**••*•*

SEGMENT 1 *
PAGF 0 1 7 7 7 7 7 / * A L L O C PAGE SPACE FOR B U F F E R S .
* * * * * * * * * * * * * * * *

"* SEGMENT 04 * CONTAINS PHANTOM INTS., SEMAPHORES, PCB,
* * FAULT HANDLERS.

MAPGEN - A TOOL FOR BUILDING PRIMOS IV

PRIMOS IV, REVISION 16.2 PAGE 66

SEGMENT 4
EMPTY SEG4
WIRE SEGA
*

WIRE VPSD
WIRE IFLTB
•

WIRE SUPCSK

PR0004
SEG4SZ
VPSD

VPSD
U2PC8E

SEG4S?

* SEGMENT 05 * CONTAINS

SEGMENT 5 PR0005

* SEGMENT 06 * CONTAINS

SEGMENT 6
WIRE 0
EMPTY 0
RESIDE GETSEG

PR0006
WIRE6
WIRE6
COMO$$

* SEGMENT 07 * CONTAINS

SEGMENT 7
WIRE 0
WIRE 30000
EMPTY 0

*
2000

32000
177777

* SFGMENT 10 * CONTAINS

SEGMENT 10
RESIDE 0
PAGE 0

PR0010
2000

177777

* SFGMENT 11 * CONTAINS

SEGMENT 11 PR0011

* SEGMENT 12 * CONTAINS

SEGMENT 12 PR0012

* SEGMENT 14
*

* CONTAIN
* SPECIAL

******** ********
SEGMENT 14
EMPTY SEG14
WIRE SEG14
*

ONE SEG14
*
PAGE HMAP
WIRE PAGCOM
*
ONE PAGCOM

PR0Q14
SDWE
HMAP

HMAP

PAGCOM
SDWE

SDWE

/*
/*
/*

12000 1
/*
/*
/*

DO NOT NEED PAGING SPACE.
PHANTOM CODE, CHECKS, BASE,
SEMCOM, WARM/COLD START, ETC.
* VPSD WIRED FOR OS DEBUGGING.
INTERRUPT HANDLERS, CHKLOG,
L0GEV1, PCBS THRU USER 2.
SOME CONCEALED STACKS, ISTACK

RING ZERO GATES.

0/S KERNAL PROCEDURE AND LINKAGE.

/*

/*

TFLIOB

/*
/*
/*

USRCOM

/*
/*

WIRED THRU RTNSEG.

COLD-START RES UP TO COMO$$.

BUFFERS.

USER 1'S OUTPUT BUFFER WIRED.
USER 1*S INPUT BUFFER WIRED.
NO PAGING SPACE.

.

USER 1 COMMON COLD-START RES-
REST IS UNINITIALIZED.

FILE SYSTEM PROCEDURE AND LINKAGE.

NETWORK SYSTEM PROCEDURE LINKAGE.

ONE-TO-ONE STUFF LIKE PAGCOM, HDRBUF,
CODE.

/*

4000 /*
/*

4000 /*
/*
/*
/*
/*

NO PAGING SPACE.
HDRBUF, CONFIG, RSAV, FIGCOM,
MMAP, INITIAL HMAPS OF SYSTEM
TAPE-DUMP, MEMORY-SCAN CODE,
WARM-COLD
MUST ALLOCATE PAGING SPACE.
PAGCOM, PAGDEV, SDWO, SDW1,
SDW3 TABLES

MAPGEN - A TOOL FOR BUILDING PRIMOS IV

PRIMOS I V , REVISION 1 6 . ? PAGE 67

•':*'* *********** *

* SEGMENT 6000 * CONTAINS SUPERVISOR'S RING-Q STACK.

SEGMENT 6000 PR600Q
WIRE 0 2000 /* FIRST PAGE IS WIRED
PAGE 0 2 000 .
*********** *****

* END OF SEGMENT DEFINIT 10NS

/*,NEEDS- PAGE DISK

* * * * * * * * * * * * * * * *
*
* F ILL IN THE HMAP AND MMAP
HMAP HMAP
WAP MMAP
*; V'.:
* PRINT A MEMORY MAP.
*

MAP
*
*
*

DUMP OF PAGE MAPS FOR DEBUGGING ONLY-

* DUMP
*

* SAVE COLD-START IMAGE.

COLD *C0LDS 1/135777
* %
QUIT
*

CO CONTINUE
CO TTY

MAPGEN - A TOOL FOR BUILDING PRIMOS IV

PRIMOS IV, REVISION 16.2 PAGE 68

2_!![ODIFICAI!gNS_IO_PRIMOS_IV

TRT FOLLOWING DE SCRIBE'S THE MAJOR MODIFICATIONS THAT HAVE BEEN
MADE TO THE INTERNAL LOGIC OF PRIMOS IV. THIS INFORMATION IS
REQUIRED NORMALLY ONLY BY THOSE INVOLVED IN THE MODIFICATION OR
MAINTENANCE OF PRIMOS IV.

2^1,IHE„^PLIIIING_Q£_^£6M£NT,A

THE LARGEST CHANGE TO PRIMPS IV SOFTWARE WAS THE SPLITTING UP OF
THE SEGA PROGRAM INTO TWO SEPARATE PIECES: SEGA AND SEG1A. IN
REVISION 15 OF PRIMOS IV, SEGA CONTAINED ALL OF THE DATABASES AND
SOME OF THE CODE FOR MANAGING BOTH THE VIRTUAL MEMORY ENVIRONMENT
AND THE PROCESS EXCHANGE MECHANISM. ALLOCATION OF THE VARIOUS
DATABASES IN SEGMENT A WAS FAST BECOMING AN IMPOSSIBLE JUGGLING
ACT. SYSTEMS THAT NEEDED LARGE USER ADDRESS SPACES HAD TO
SUPPORT A MINIMAL NUMBER OF USERS IN ORDER TO MAKE ROOM IN
SEGMENT A FOR THE INCREASED SIZE OF PAGING AND SEGMENTATION
DATABASES. WHFN THE SINGLE VERSION OF PRIMOS IV WAS DEVELOPED,
IT WAS NECESSARY TO PROVIDE SPACE FOR PROCESS EXCHANGE AND
VIRTUAL MEMORY DATABASES AT THE LARGEST SIZE THEY WOULD EVER BE
CONFIGURFD. THERE WAS NOT ENOUGH ROOM IN ONE SEGMENT FOR THIS,
SO SEGMENT A HAD TO BE SPLIT UP.

ON THE PRIME 400 AND PRIME 500, THE HARDWARE REQUIRES SOME CODE
"AND DTfA TO RESIDE IN SEGMENT NUMBER A. THIS INCLUDES PHANTOM
INTERRUPT CODE AND MACHINE CHECK HANDLING. IN ADDITION, THE
HARDWARE REQUIRES THAT ALL PROCESS EXCHANGE DATABASES RESIDE IN
THE SAME SEGMENT. SINCE BOTH INTERRUPTS AND MACHINE CHECKS ARE
CLOSELY COUPLED TO THE PROCESS EXCHANGE MECHANISM, IT MAKES SENSE
TO HAVE SEGMENT NUMBER A CONTAIN BOTH THE PROCESS EXCHANGE
DATABASES AND THE INTERRUPT AND MACHINE CHECK HANDLING CODE.

THE PRIMOS IV OPERATING SYSTFM REQUIRES SOME CODE AND DATA TO
RESIDE IN MEMORY PAGES THAT ARE LOADED SUCH THAT THEY ARE
ONE-TO-ONE WITH PHYSICAL MEMORY- (ONE-TO-ONE PAGES HAVE THEIR
PHYSICAL MEMORY ADDRESS EQUAL TO THE WORD NUMBER OF THEIR VIRTUAL
MEMORY ADDRESS.) SUCH CODE INCLUDES THE COLD START AND WARM
START ROUTINES, THE TAPE DUMP PROGRAM, AND THE TOEHOLD TO ENTER
VPSD. DATABASES WHICH MUST BE ONE-TO-ONE WITH PHYSICAL MEMORY
INCLUDE THE CRASH REGISTER FILE AREA, THE SEGMENT DESCRIPTOR
TABLES FOR ALL USERS, AND THE PAGE MAPS USED BY THE KERNEL
SEGMENTS OF PRIMOS IV.

ALL CODE AND DATA WHICH HAD TO RESIDE ONE-TO-ONE WITH PHYSICAL
MEMORY WAS MOVED TO A NEW SEGMENT, SEGMENT NUMBER 1A. THIS NEW
SEGMENT CONTAINS ALL THE DATABASES WHICH ARE INVOLVED WITH
VIRTUAL MEMORY PAGING AND SEGMENTATION. IT ALSO CONTAINS THE
TAPE DUMP PROGRAM, THE CRASH REGISTER SAVE AREA, AND SOME UTILITY
CODE USED BY THE PAGING SYSTEM.

FIGCOM HAS ALSO BEEN MOVED TO SEGMENT 1A. IT RETAINS LOCATION
700 AS IT WAS IN SEGMENT A.

MODIFICATIONS TO PRIMOS IV INTERNAL LOGIC

PRIMOS IV, REVISION 16.? PAGE 70

BOTH THE UNIT TABLE ENTRIES AND ATTACH POINT ENTRIES CONTAIN
"POINTERS" TO UNIT TABLE ENTRIES IN A SEPARATE COMMON AREA,
UTCOM. THE LOGIN NAME REMAINS IN USRCOM AS A 32 CHARACTER
STRING. AT REVISION 16 OF PRIMOS, ONLY SIX CHARACTERS (3
WORDS) ARE USED; THE REMAINING WORDS ARE RESERVED FOR FUTURE
USE.

AS IN PREVIOUS REVISIONS, VARIABLES IN USRCOM SUCH AS UNITAB
(START OF UNIT TABLE POINTERS) ARE ARRAYS EQUIVALENCED TO LIST
THUS PROVIDING BASICALLY THE SAME FUNCTION AS PL/1 8ASED
OVERLAYS. THE EXPRESSION:

PTR = UNITAB ((USR-1)*USRSIZ)+UNITNR)

WHERE USR IS THE PROCESS OR USER NUMBER
USRSIZ IS THE PER PROCESS LENGTH OF "USRCOM1

UNITNR IS THE FILE UNIT NUMBER.

THUS BECOMES A POINTER TO THE UNIT TABLE ENTRY FOR THE UNIT.
IF PTR HAS A VALUE OF 0, THIS INDICATES THAT THE UNIT IS
CLOSED AND THAT A UNIT TABLE ENTRY IN UTCOM DOES NOT EXIST.

THE EXPRESSIONS:

PTR = CURATT ((USR-1)*USRSIZ)
PTR = HOMATT C(USR-1)*USRSIZ)

ARE USED TO OBTAIN THE POINTER TO UNIT
REPRESENTING CURRENT AND HOME ATTACH POINTS.

TABLE ENTRIES

THE VARIABLE LUSR IN THE COMMON AREA PUDCOM IS INITIALIZED AT
COLD START TO THE VALUE (USR-1)*USRSIZ.

2^5.2_NFW_STRUCiyRE_OF_UICOM

THE COMMON AREA UTCOM CONTAINS UNIT TABLE ENTRIES. THE
VARIABLES IN UTCOM SUCH AS VSTAT, VBR, ETC. (WHICH WERE IN
USRCOM PRIOR TO REVISION 16) ARE ALSO EQUIVALENCED TO LIST.
THE EXPRESSION:

STATUS = VSTAT (PTR)

RESULTS IN STATUS CONTAINING THE OPEN STATUS ASSOCIATED WITH A
PARTICULAR UNIT OR ATTACH POINT WHEN PTR IS OBTAINED USING THE
ABOVE STATEMENTS.

VARIABLES IN UTCOM WHEN USED TO REPRESENT OPTN FlTE UNITS
RETAIN THE SAME MEANINGS AS IN PREVIOUS PRIMOS IV AND V
RELEASES. THE VARIABLES AND MEANINGS ARE:

VSTAT BIT 1 : IF SET FILE MODIFIED
BIT 2: IF SET OPEN FOR SYSTEM USE,

EXCLUDE FROM CONCURRENCY
BITS 3-8: FILE TYPE

CHECK

MODIFICATIONS TO PRIMOS IV INTERNAL LOGIC

PRIMOS IV, REVISION 16.2 PAGE 71

BITS 9-16: OPEN STATUS
1 = READ
2 = WRITE
3 = READ/WRITF
A = ATTACH

VBRA BEGINNING RECORD ADDRESS OF FILE

VDVNO LOGICAL DISK NUMBER

VDCRA CURRENT DISK RECORD ADDRESS IN DAK INDEX; 0 IF
SAM FILE, -1 IF INVALID BUT A DAM FILE.

VDRWP ORDINAL RECORD NUMBER IN FILE ' Y

VCRA CURRENT DISK RECORD ADDRESS IN FILE

VRWP WORD OFFSET OF CURRENT POSITION IN CURRENT
DISK RECORD

VPRIV BITS 1-8: ACTUAL RWLOCK VALUE
0 = ONLY ONE USER
1 = ONE WRITER XOR N READERS
3 - N WRITERS XOR N READERS
5 = N WRITERS AND N READERS

BITS 9-16: PRIVILEGE BITS
1 = READ
2 = WRITE
4 = TRUNCATE/DELETE

VPOPRA DISK RECORD ADDRESS OF FILE ENTRY IN FATHER
UFD ENTRY WHOSE DATE-TIME MODIFIED (DTW)
FIELDS ARF TO BE UPDATED UPON CLOSE IF THE
FILE WAS MODIFIED.

VPRPRW POSITION IN VPOPRA RECORD OF ENTRY CONTROL
WORD (ECW) OF FILE ENTRY.

IF THE UNIT TABLE ENTRY IS USED TO REPRESENT AN ATTACH POINT
RATHER THAN AN OPEN FILE, THE FOLLOWING DEFINITIONS APPLY:

VSTAT SAME AS FOR FILES; OPEN STATUS IS 4 WHEN
"OPEN FOR ATTACH"

VB~RA SAME AS FOR FILES

VDVNO SAME AS FOR FILES

VDCRA NOT VALID

VDRWP NOT VALID

VCRA NOT VALID

VRWP NOT VALID

MODIFICATIONS TO PRIMOS IV INTERNAL LOGIC

PRIMOS IV, REVISION 16.2 PAGE 72

VPRIV BITS 1-8: RESERVED
BITS 9-16: 0 = NONOWNER; 1 = OWNER

VPOPRA SAME AS FILE, DTM INDICATED IS UPDATED

VPOPRW

WHEN ATTACH POINT UFD IS MODIFIED.

SAME AS FILE, DTM INDICATED IS UPDATED
WHEN ATTACH POINT IS MODIFIED.

THE ATTACH POINT NAME IS NO LONGER STORED IN ANY SYSTEM TABLE
AS AN ASCII CHARACTER STRING. THE NAME MAY BE CONVENIENTLY
READ IN FROM DISK BY USING THE RING 0 SUBROUTINE UFDNAM. THE
SOURCE FOR UFDNAM MAY BE FOUND IN PRI40OFS.

9.5.3 ALLOCATION OF UNIT TABLE ENTRIES IN UTCOM

UNIT TABLE ENTRIES ARE ALLOCATED AT COLD START BY AINIT AND
ALLOC
G A R N E
AND

ATED
RS A
HOME

AND FR
UNIT TA
ATTACH

EED WHI
BLE ENTR

POINTS

LE TH
Y FOR

FOR

E SYSTE
SYSUN (F
EVERY

W I
ILE
CONF

S RUN
UNIT G
IGURED

N1NG.
) AND
USER

AINIT
CURRENT
AT COLD

START
BE C
= 0,

. TH
LOSED
HOWEV

ESE UNI
AND TH

ER. AT

T TABLE
E ATTACH
FILE 0

ENTRIE
POINT

PEN T

S ARE NE
S MADE I
IME, UN

VER
NVAL
IT

FREED.
ID BY
TABLE

SYS
SETTIN
ENTRI

UN MAY
G VSTAT
ES ARE

ALLOC
SUBRO
FOUND

ATED
UTINE
IN P

BY THE
RTNUN.

RIAOO>F

SUPROUT
THE SO

S. THE

INE GE
URCES
ARRAY

BY THE
MAY BE
S A BIT

ENTRY IN UTCOM. A TRUE BITd)

TUN AND
FOR GET
UTBITS I

FREE
UN
N CO

D (RET
AND R
MMON F

URNED)
TNUN
SCOM I

MAP
INDIC

WITH
ATES

1 BIT
A FREE

PER UNIT
TABLE EN

TABLE
TRY.

THE UNIT TABLE RESERVATION STRATEGY USES
VARIABLES:

THE FOLLOWING

RUFREE TOTAL NUMBER OF RESERVED UNITS IN SYSTEM
THAT HAVE NOT BEEN ALLOCATED.

RUCNT

NUFREE

THE NUMBER OF RESERVED UNITS PER USER

NUMBER OF FREE UNIT TABLE ENTRIES IN UTCOM

UUCNT(USR) AN ARRAY EACH OF WHOSE ELEMENTS CONTAIN THE
NUMER OF UNIT TABLE ENTRIES CURRENTLY IN USE
FOR THE GIVEN USER.

MODIFICATIONS TO PRIMOS IV INTERNAL LOGIC

PRII^OS IV, REVISION 16.2 PAGE 73

10 APPLICATION NOTE - T$MT

THIS SECTION DESCRIBES USE OF THE T$WT WAIT SEMAPHORE AND ERROR
RECOVERY SCHEMES FOR READING AND WRITING TAPE WITH T$MT.

lQ.1_ySE_0F_THE_I$WI_yAII_SEMAPHORE

LOOPING ON THE STATUS DONE WORD STATVd) USES UP CPU TIME WHILE
THE PROCESS WAITS FOR THE TAPE OPERATION TO COMPLETE. THIS IS
NOT A GOOD PRACTICE FOR TWO REASONS. FIRST, IT TIES UP THE CPU
NEEDLESSLY AND SLOWS DOWN SYSTEM PERFORMANCE IN GENERAL- SECOND,
IT CAUSES THE PROCESS TO WASTE SOME OF ITS TIME SLICE WITHOUT
DOING USEFUL WORK. THIS WILL RESULT IN THE PROCESS BEING
SCHEDULED EXTRA TIMES AND THE REAL TIME OF PROGRAM EXECUTION WILL
BE LONGER THAN NECESSARY.

THIS PROBLEM CAN BE SOLVED BY USING A SEMAPHORE. IF THE PROCESS
WAITS ON A SEMAPHORE, THE WAIT TIME IS NOT COUNTED AGAINST ITS
TIME SLICE. THEREFORE, AS SOON AS THE TAPE OPERATION
THE PROCESS WILL BE SCHEDULED TO RUN AGAIN TO FINISH
SLICE.

COMPLETES,
UP ITS TIME

THE PROGRAM TSMT CONTAINS A WAIT SEMAPHORE THAT CAN
THIS PURPOSE.THIS SEMAPHORE IS USED TO QUEUE TAPE

BE USED FOR
REQUESTS. IF

THE PROCESS MAKES A TAPE REQUEST WHEN
ANOTHER OPERATION, THE PROCESS IS PUT

THE CONTROLLER IS BUSY
ON THE WAIT SEMAPHORE.

WITH

WHENEVER THE PROGRAM WANTS TO WAIT FOR A TAPE OPERATION TO
COMPLETE, • IT CAN CALL TSMT WITH A REQUEST FOR STATUS. SINCE THE
TAPE CONTROLLER IS ALREADY BUSY WITH THE PREVIOUS OPERATION, THE
PROCESS WILL BE PUT ON THE T$MT WAIT SEMAPHORE.

SINCE THE STATUS REQUEST IS FAST AND DOESN'T AFFECT THE TAPE, IT
IS A CONVENIENT TAPE OPERATION TO USE TO PROVIDE THE SEMAPHORE
WAIT. A SCRATCH STATUS VECTOR SHOULD BE USED SO THAT THE STATUS
FROM THE ORIGINAL CALL IS NOT DESTROYED.

EXAMPLE OF WAIT CODE:

INTEGER STATV(3) /* STATUS VECTOR SET BY T$MT
INTEGER UNIT
INTEGER BUF (1024)
INTEGER XSTATV (3)

/* MAG TAPE DRIVE NUMBER (0-7)
/* OUTPUT BUFFER
/* SCRATCH VECTOR FOR WAIT

CALL TSMT (UNIT,LOC(BUF),,:042620,STAT V) /* WRITE 1024

/* OVERLAP EXECUTION WITH 10

WAIT FOR TAPE WRITE TO COMPLETE.

APPLICATION N01F - T$MT

PRIMOS IV, REVISION 16.2 PAGE 74

100 IF (STATVd) .EQ.O) GOTO 120 /* SEE IF 10 IS ALREADY DONE
CALL T$MT (UNITrL0C(0),0,:100G00,XSTATV> /* WAIT
GOTO 100

120

lQ.2_ERR0R_R££QV££I_FaS.I&E£_HBII£S

THERE ARE MANY POSSIBLE ERROR RECOVERY SCHEMES. THE TWO THAT ARE
DESCRIBED HERE ARE BASED ON DIFFERENT RECORD FORMATS. THE FIRST
ALGORITHM CAN BE USED WHEN RECORDS CONTAIN ONLY DATA. THE OTHER
SCHEIE REQUIRES THAT THE RECORDS CONTAIN EXTRA INFORMATION FOR
ERROR RECOVERY

lD*2.1_SIJi]PLE_WRIIE_ERR0R_REC0VERY

THE AIM OF THE SIMPLE ERROR RECOVERY PROGRAM IS TO GET BY A
POSSIBLE BAD SPOT ON THE TAPE BY ERASING PART OF THE TAPE
WHERE THE ERROR OCCURRED AND REWRITING THE RECORD AFTER THAT
GAP.

THE PROGRAM DOES NOT TRY TO REWRITE THE RECORD ON THE SAME
SPOT ON THE TAPE EVEN THOUGH REPEATED TRIES ON THE SAME SPOT
MAY IMPROVE THE TAPE ENOUGH TO PERMIT THE WRITE TO SUCCEED.
THE TAPE IS CONSIDERED MARGINAL AT THAT SPOT AND MAY NOT BE
READABLE AT A LATER DATE.

THE TAPE CAN BE ERASED BY WRITING A FILE MARK AND THEN
BACKSPACING OVER THE FILE MARK. THIS WILL CAUSE THREE INCHES
OF TAPE TO BE ERASED.

APPLICATION NOTE - T$MT

PRIMOS IV, REVISION 16.2 PAGE 75

PROGRAM STEPS FOR WRITE ERROR RECOVERY:

CHECK THAT ERROR RECOVERY IS POSSIBLE. DON'T ATTEMPT
ERROR RECOVERY IF THE TAPE DRIVE IS OFFLINE OR NOT
READY, OR THE TAPE IS FILE PROTECTED.

BACKSPACE OVER THE RECORD.

ERASE A THREE INCH GAP ON THE TAPE.

A. WRITE A FILE MARK.

B. BACKSPACE A RECORD AND CHECK THAT THE FILE NARK
DETECTED BIT IS SET IN THE STATUS WORD.

ATTEMPT TO WRITE THE RECORD AGAIN.

IF THE RECORD WAS NOT WRITTEN SUCCESSFULLY, REPEAT
STEPS 1-4 UP TO TWENTY TIMES CA MAXIMUM OF FIVE FEET
OF ERASED TAPE).

lSi2i2_WRITE_ERR0R_REC0VERI_WIIH_S.£QU£NCE_NUMB

THERE IS A DRAWBACK TO THE FIRST SCHEME. SINCE THE TAPE IS
BAD AT THE SPOT WHERE THE ERROR RECOVERY IS BEING DONE, IT IS
POSSIBLE FOR ERRORS TO OCCUR WHILE BACKSPACING. FOR EXAMPLE,
IF THE BAD RECORD HAS A GAP IN THE MIDDLE OF IT, THE PROGRAM
MIGHT DETECT TWO SHORT RECORDS WHEN BACKSPACING. IF THE
PROGRAM- HAS SOME WAY OF IDENTIFYING RECORDS, THE PROGRAM CAN
BE SURE THAT IT HAS NOT LOST POSITION DURING ERROR RECOVERY.

ONE WAY TO DO THIS IS TO INCLUDE A SEQUENCE NUMBER WITH EVERY
RECORD. THEN WHEN ERROR RECOVERY IS ATTEMPTED, THE PROGRAM
BACKSPACES TWO RECORDS AND THEN READS A RECORD. THIS RECORD
SHOULD CONTAIN THE SEQUENCE NUMBER OF THE LAST GOOD RECORD
BEFORE THE ERROR RECORD.

PROGRAM STEPS FOR ERROR RECOVERY:

U CHECK THAT ERROR RECOVERY IS POSSIBLE. DON'T ATTEMPT
ERROR RECOVERY IF THE TAPE DRIVE IS OFFLINE OR NOT
READY, OR THE TAPE IS FILE PROTECTED.

2. POSITION THE TAPE AFTER THE LAST GOOD RECORD.

JC. BACKSPACE TWO RECORDS. THIS WILL PLACE THE TAPE
BEFORE THE LAST GOOD RECORD.

P~ READ A RECORD AND VERIFY THAT ITS SEQUENCE NUMBER
MATCHES THE ONE EXPECTED FOR THE LAST GOOD
RECORD.

C. IF THE 'GOOD* RECORD CAN'T BE READ, THEN IT IS

APPLICATION NOTE - T$MT

PRIMOS IV, REVISION 16.2 PAGE 76

POSSIBLE THAT THE TAPE IS NOT POSITIONED
CORRECTLY. BACKSPACE SEVERAL RECORDS AND READ
THOSE RECORDS TO FIND THE SEQUENCE NUMBER OF THE
LAST GOOD RECORD WRITTEN.

3^ ERASE A THREE INCH GAP ON THE TAPE.

A. WRITE A FILE MARK.

B. BACKSPACE A RECORD AND CHECK THAT THE FILE MARK
DETECTED BIT IS SET IN THE STATUS WORD.

4. ATTEMPT TO WRITE THE RECORD AGAIN.

5l IF THE RECORD WAS NOT WRITTEN SUCCESSFULLY, REPEAT
STEPS 1-4 UP TO TWENTY TIMES, LENGTHENING THE GAP
EACH TIME.

!Q.&3_ERROR_RECOVERY_FgR_TAPE_READS

ERROR RECOVERY WHEN READING A TAPE INVOLVFS REPEATEDLY REREADING
THE RECORD. THE SAME PROBLEM OF LOSING POSITION CAN OCCUR WHEN
DOING ERROR RECOVERY SO THE ALGORITHM CAN BE IMPROVED BY
VERIFYING THE SEQUENCE NUMBER EACH TIME A RECORD IS READ.

PROGRAM STEPS FOR READ ERROR RECOVFRY:

1. CHECK THAT ERROR RECOVERY IS POSSIBLE. DON'T ATTEMPT
ERROR RECOVERY IT fHE TAPE DRIVE IS OFFLINE OR NOT
READY.

2~. BACKSPACE AND REREAD THE RECORD EIGHT TIMES.

3. IF UNSUCCESSFUL, BACKSPACE EIGHT RECORDS (OR TO THE LOAD
POINT IF LESS THAN EIGHT RECORDS AWAY), SPACE FORWARD
SEVEN RECORDS AND THEN READ THE PROBLEM RECORD. THIS
SEQUENCE DRAWS THE TAPE OVER THE TAPE CLEANER AND COULD
DISLODGE A POSSIBLE DIRT PARTICLE.

A. REPEAT STEPS 1-3 EIGHT TIMES.

APPLICATION NOTE - T$MT

SUBJECT: FTNOPT REV. 16^1

THE REV, 16.1 WASTER DISK RELEASE IS UNUSUAL IN THAT TWO FORTRAN
COMPILERS ARE INCLUDED IN IT. FTN IS THE REV. 16.0 FTN WITH LITTLE
CHANGE. THE OTHER VERSION, FTNOPT, ALLOWS TWO NEW OPTIONS WHICH
INSTRUCT THE COMPILER TO PERFORM CERTAIN OPTIMIZATIONS UPON DO LOOPS,
THFSE TWO VERSIONS OF FTN WILL REMAIN SEPARATE ON SUBSEQUENT "POINT"
REVS., BUT WILL BE MERGED INTO A SINGLE COMPILER AT REV. 17.

THE DO LOOP OPTIMIZATION PERFORMED BY FTNOPT IS OPTIONAL, AND MUST BT"
EXPLICITLY REQUESTED BY THE USER IN TH.E FTNOPT COMMAND LINE. ALTHOUGH
THE LOOP OPTIMIZATION ALGORITHMS ARE GENERAL-PURPOSE, THE EFFECT OF
OPTIMIZATION ON WELL-CODED FORTRAN PROGRAMS WILL BE TO REMOVE SOME
SUBSCRIPT CALCULATIONS FROM THE DO LOOP.

THIS DOCUMENT DESCRIBES THE LOOP OPTIMIZATIONS DONE, AND THE COMMAND
LINE OPTIONS THAT INVOKF THE FTNOPT DO LOOP OPTIMIZER.

TWO TYPES OF OPTIMIZATIONS ARE DONE:

1. REMOVAL OF INVARIANT OPERATIONS
2. STRENGTH REDUCTION OF EXPRESSIONS THAT INVOLVE THE DO LOOP INDEX

1 - ____________NVAR_ ANI_OPER AJ IONS

INVARIANT OPERATIONS ARF OPERATIONS ON OPERANDS WHOSE VALUES DO NOT
CHANGE WITHIN THE DO LOOP, (E.G., THE OPERANDS ARE NOT SET BY AN
ASSIGNMENT STATEMENT WITHIN THE LOOP). SINCE THE OPERANDS DO NOT
CHANGE WITHIN THE LOOP, IT IS NOT NECESSARY FOR THE CODE THAT
PERFORMS THE OPERATION TO BE CONTAINED WITHIN THE LOOP. THEREFORE,
THE CODE FOR THESE OPERATIONS IS MOVED OUTSIDE OF THE LOOP, AND IS
EXECUTED ONLY ONCE, IMMEDIATELY BEFORE LOOP SET-UP AND ENTRY,
INSTEAD OF EVERY TIME THE LOOP IS EXECUTED.

THE CURRENT IMPLEMENTATION DOES INVARIANT OPERATION REMOVAL FOR"
ARITHMETIC AND LOGICAL OPERATIONS ON INTEGER (INTEGER*2 AND
INTEGER*^) OPERANDS, FOR INTEGER MODE CONVERSIONS, AND FOR THE
INTEGER INTRINSICS.

2- __________________

STRENGTH REDUCTION IS TITT CONVERSION OF AN EXPRESSION IN THE DO
LOOP THAT INVOLVES THE LOOP INDEX INTO A SIMPLER EXPRESSION, THAT
EXECUTES FASTER THAN THE ORIGINAL EXPRESSION. USUALLY, STRENGTH
REDUCTION IS DONE ON EXPRESSIONS THAT INVOLVE A MULTIPLICATION OF

FTNOPT REV. 16.1

THE DO LOOP INDEX. SUCH EXPRESSIONS ARE CONVERTED, OR REDUCED, TO
EXPRESSIONS THAT
MULTIPLICATION.
THE LOOP FURTHER

DO SEVERAL ADDITIONS, INSTEAD
SOME OF THESE ADDITIONS CAN BE MOVED
DECREASING THE EXECUTION TIME OF

OF THE
OUTSIDE OF
THE LOOP.

STRENGTH REDUCTION OF EXPRESSIONS IN A DO LOOP CAN BE DONE ONLY IF
THE FOLLOWING CONDITIONS ARE TRUE:

V. THE LOOP INDEX IS ALTERED ONLY IN THE NORMAL LOOP INCREMENTING
MANNER, (I.E., IT IS NOT MODIFIED BY AN ASSIGNMENT STATEMENT IN
THE DO LOOP).

2. THE LOOP INCREMFNT IS INVARIANT WITHIN THE DO LOOP.

Tl COM^AND_OPIIONS

OPTIMIZATION OF DO LOOPS IS DONE ONLY IF EXPLICITLY REQESTED BY THE
USER IN THE FTNOPT COMMAND LINE. EVEN THOUGH OPTIMIZATON IS
REQUESTED, IT IS POSSIBLE THAT MANY OF THE DO LOOPS (OR ALL OF
THEM), IN ANY GIVEN PROGRAM DO NOT SATISFY ALL OF THE CRITERIA FOR
OPTIMIZATION, OR CONTAIN CERTAIN STATFMENTS (E.G., READ, WRITE)
THAT MAKE OPTIMIZATION MEANINGLESS. THEREFORE, COMPILING WITH AN
OPTIMIZATION OPTION MAY NOT RESULT IN ANY INCREASED PERFORMANCE FOR
SOME FORTRAN PROGRAMS.

THERE ARE TWO OPTIMIZATION COMMAND LINE OPTIONS:

OPTION FUNCTION

-OPT PERFORM OPTIMIZATION ON ALL
DO LOOPS THAT DO NOT CONTAN
ANY GO TO STATEMENTS.

-UNCOPT PERFORM OPTIMIZATION UNCONDITIONALLY

THE CORRESPONDING REGISTER SETTINGS ARE:

B-REG ON OPTION OFF OPTION

BIT 5 004000 OPT
BIT 6 002000 UNCOPT

MS£RIPIIgN-,QF_IHE_0BI10NS

-OPT IS A "SAFE" OPTION. ANY LOOP THAT IS OPTIMIZED BY THE
COMPILER WHEN THIS OPTION IS SPECIFIED WILL EXECUTE CORRECTLY. ANY

[IZATION ARE NOT DO LOOPS THAT
OPTIMIZED.

COULD POTENTIALLY NOT WORK AFTER OPTI

-UNCOPT CAUSES THE COMPILER TO ATTEMPT TO OPTIMIZE ALL DO LOOPS,
EVEN THOSE THAT CONTAIN GO TO STATEMENTS. THE OPTIMIZED CODE
GENERATED BY FTNOPT FOR DO LOOPS THAT CONTAIN GO TO STATEMENTS THAT
TRANSFER CONTROL ENTIRELY WTHIN THE DO LOOPS, OR THAT SIMPLY EXIT

PAGE

FTNOPT REV. 16.1

FROM THE LOOPS WILL EXECUTE CORRECTLY. HOWEVER, IF ANY LOOP
CONTAINS ANY 60 TO STATEMENT THAT EXITS TO A CODE SEQUENCE THAT
EVENTUALLY RETURNS INTO THE LOOP, THE OPTIMIZED CODE MAY NOT (AND
MOST LIKELY WILL NOT) EXECUTE CORRECTLY IF ANY OF THE OPERANDS THAT
ARE INVARIANT WITHIN THE LOOP OR THE LOOP INDEX OR INCREMENT
VARIABLE ARE MODIFIED BY THE CODE SEQUENCE OUTSIDE OF THE LOOP. IF
THIS OPTION IS USED* IT IS THE USER'S RESPONSIBILITY TO INSURE THAT
NO OPERANDS
ARE MODIFED

THAT ARE CONSIDERED TO BE INVARIANT BY THE
BY THE CODE SEQUENCE OUTSIDE OF THE LOOP.

OPTIMIZER

PAGE

SUBJECT R E V . 16 LOADER CHANGES

1. EDB

A TIMES FASTER.

INPUT SPECIFICATION IS REQUIRED - I.E., EDB NO LONGER DEFAULTS TO THE
PAPER TYPE READER.

(PTR) AND (ASR) WILL NO LONGER BE RECOGNIZED. FOR CONSISTENCY WITH
COMMAND LINE SYNTAX, -PRT AND -ASR SHOULD BE USED INSTEAD.

SEG

THE INTERNAL TABLES WHICH ARE COPIED INTO SEGMENT 0 OF THE
HAVE BEEN CHANGED IN ORDER TO EXPAND THE SYMBOL TABLE AREA
ALL COMMAND FILES SHOULD BE RUN TO INSURE THAT THERE A

SEG RUN FILE
. THEREFORE,
RE CONFLICTS.

FOR EXAMPLE, R-MODE INTERLUDE COMMANDS IN CMDNCO CAN NOT H
FORMAT UNTIL THEY HAVE BEEN REBUILT. OLD FORMAT SEG RUN F
CONVERTED TO THE NEW FORMAT AUTOMATICALLY BY SEG. BUFCTL
OF (SEGS*2+2 WORD S) : COMMON/BUFCTL/REVFLG,BUFCNT,BUFCTL
BIT RATHER THAN A WORD IS USED TO INDICATE WHETHER OR
SUBFILE HAS BEEN LOADED INTO. REVFLG WILL BE PRESENT FROM

ANDLE THE NEW
ILES WILL BE
NOW CONSISTS

<SEGS*2) . A"
NOT A SEGMENT
NOW ON. IT

IS S
CURRE

ET TO
NTLY, SE

-1
GS = 2

AS A
56.

FLAG THAT
THERE ARE

TABLE
32 SU

CONV
BFILE

ERSIO
S PER

N WI
SEG

LL NOT
MENT.

BE NECESSARY

SEG CHECK FOR LOAD* OR VLOAD* TYPING ERRORS WHICH USED TO RESULT IN THE
RUN FILE BEING DELETED. COMMON BLOCKS LONGER THAN ONE SEGMENT NO
LONGER HAVE TO BEGIN AT UND ZERO. MULTIPLE STACK ALLOCATION WILL NO
LONGER RUN. THE MIX OPTION CAN BE USED WITH ARRAYS OVER 6AK. THE
R-MODE INTERLUDE PR06RAMS WILL EXIT GRACEFULLY SHOULD CONTROL RETURN TO
RUNIT.

BUGS FIXED

TAR25528- UPDATE SYMBOL TABLE SIZE PRIOR TO WRITING OUT SEGMENT 0

TAR25724- DO NOT ASSIGN STACK SEGMENT

TAR2553?- DOUBLE PRECSION ADD SO THAT COMMON BLOCKS LONGER THAN ONE
SEGMENT NO LONGER HAVE TO BEGIN AT WORD U.

TAR25533- MIX OPTION/LONG COMMON BUG FIXED

TAR12731- CHECK FOR LOAD/VLOAD* TYPING ERROR

CMDMAK AND CM.FILE HAVE BEEN FIXED TO CALL EXIT UPON RETURN FROM RUNIT
IN THE R-MODE INTERLUDE PROGRAM

PAGE 2

DIRECT COMMON REFERENCE CONVERSION HAS BEEN FIXED

PAGE

3. LOAD ••£

SYMBOLS MAY HAVE 8-CHARACTER NAMES.

RR (RESET RANGE) CAN BE USED TO RESET THE SAVE RANGE PRIOR TO EN
(ENTIRE SAVE) WHEN OVERLAYS ARE BUILT.

LINKING IN COMMON IS NOW ALLOWED WHILE FORWARD
REFERENCES ARE BEING UNSTRUNG.

BUGS FIXED

LOAD ALLOWS LINKING IN COMMON WHEN UNSTRING FORWARD
REFERENCES. LOAD WILL NOW GIVE A CORRECT EOF ERROR
MESSAGE WHEN AN ATTEMPT IS MADE TO LOAD A NULL FILE

A FIX HAS BEEN WADE TO REMOVE THE CODE,CODE ARGUMENT
SEQUENCE IN PRWF$$ CALLS

LOAD HAS BEEN FIXED SO BITS DIPLAYED IN *UII ARE CORRECT

SUBJECT: REV. 16 LOADER CHANGES

1. EDB

4 TIMES FASTER

INPUT SPECIFICATION
PAPER TYPE READER.

IS REQUIRED - I.E EDB NO LONGER DEFAULTS TO THE

(PTR) AMD (ASR) WILL NO LONGER BE RECOGNIZED. FOR CONSISTENCY WITH
COMMAND LINE SYNTAX- -PRT AND -ASR SHOULD BE USED INSTEAD.

SEG

THE INTERNAL TABLES WHICH ARE COPIED INTO SEGMENT 0 OF THE SEG RUN FILE
HAVE BEEN CHANGED IN ORDER TO EXPAND THE SYMBOL TABLE AREA. THEREFORE,
ALL COMMAND FILES SHOULD BE RUN TO INSURE THAT THERE ARE CONFLICTS.
FOR E
FORMA
CONVE

XAMPLE
T UNTI
RTED

, R-MODE
L THEY H
TO THE N

INTERLUDE COMMANDS IN CMDNCO CAN NOT HANDLE THE NEW
AVE BEEN REBUILT. OLD FORMAT SEG RUN FILES WILL BE
EW FORMAT AUTOMATICALLY BY SEG. BUFCTL NOW CONSISTS

OF (SEGS*2+2 WORDS): COMMON/BUFCTL/REVFLG,BUFCNT,BUFCTL(SEGS*2) . A
BIT RATHER THAN A WORD IS USED TO INDICATE WHETHER OR NOT A SEGMENT
SUBFILE HAS BEEN LOADED INTO. REVFLG WILL BE PRESENT FROM NOW ON. IT
IS S
CURRE

ET TO
NTLY,

-1 AS
SEGS=*256

FLAG
THERE

THAT
ARE

TAB
32

LE CO
SUBFI

NVERSIO
LES PER

N WILL
SEGME

NOT
NT.

BE NECESSARY.

SEG CHECK FOR LOAD* OR VLOAD* TYPING ERRORS WHICH USED TO RESULT IN THE
RUN FILE BEING DELETED. COMMON BLOCKS LONGER THAN ONE SEGMENT NO
LONGER HAVE TO BEGIN AT UND ZERO. MULTIPLE STACK ALLOCATION WILL NO
LONGER RUN. THE MIX OPTION CAN BE USED WITH ARRAYS OVER 64K. THE
R-MODE INTERLUDE PROGRAMS WILL EXIT GRACEFULLY SHOULD CONTROL RETURN TO
RUN IT.

BUGS FIXED

TAR25528- UPDATE SYMBOL TABLE SIZE PRIOR TO WRITING OUT SEGMENT 0

TAR25724- DO NOT ASSIGN STACK SEGMENT

TAR25532- DOUBLE PRECSION ADD SO THAT COMMON BLOCKS LONGER THAN ONE
SEGMENT NO LONGER HAVE TO BEGIN AT WORD D.

TAR25533- MIX OPTION/LONG COMMON BUG FIXED

TAR12731- CHECK FOR LOAD/VLOAD* TYPING ERROR

CMDMAK AND CM.FILE HAVE BEEN FIXED TO CALL EXIT UPON RETURN FROM RUNIT
IN THE R-MODE INTERLUDE PROGRAM

PAGE 2

DIRECT COMMON REFERENCE CONVERSION HAS BEEN FIXED

PAGE

3. LOAD r ' >'•

SYMBOLS MAY HAVE 8-CHARACTER NAMES.

RR (RESET RANGE) CAN BE USED TO RESET THE SAVE RANGE PRIOR TO EN
(ENTIRE SAVE) WHEN OVERLAYS ARE BUILT.

LINKING IN COMMON IS NOW ALLOWED WHILE FORWARD
REFERENCES ARE BEING UNSTRUNG.

BUGS FIXED

LOAD ALLOWS LINKING IN COMMON WHEN UNSTRING FORWARD
REFERENCES. LOAD WILL NOW GIVE A CORRECT EOF ERROR
MESSAGE WHEN AN ATTEMPT IS MADE TO LOAD A NULL FILE

A FIX: HAS BEEN MADE TO REMOVE THE CODE,CODE ARGUMENT
SEQUENCE IN PRWF$$ CALLS ?

LOAD HAS BEEN FIXED SO BITS DIPLAYED IN *UI1 ARE CORRECT.

SUBJECT: FORTRAN LIBRARY,, PSD, AND VPSD FOR REV. 16

PSD

PSD HAS NOT BEEN CHANGED FOR REV. 16. THE LATEST VERSION IS REV.
14.2, DESCRIBED IN THE PMA MANUAL, PDR3059.

VPSD

SEVERAL MINOR BUGS IN REV. 15 VPSD HAVE BEEN CORRECTED, AND A NEW ENTRY
POINT FOR THE USE OF THF HIGHER LEVEL LANGUAGE DEBUGGER HAS BEEN ADDED.
VPSD FOR REV. 15 IS DESCRIBED IN THE PMA MANUAL.

FORTRAN LIBRARY

THE FORTRAN LIBRARY HAS SOME NEW ROUTINES AND A LOT OF UPDATED ONES.
FOR REV. 16 THE SHARED FORTRAN LIBRARY WILL BE THE DEFAULT LIBRARY FOR
V-MODE.

NEW ROUTINES:

TOVFDS CALL TOVFDS(NUM)

OUTPUTS THE 16-BIT INTEGER NUM TO THE TERMINAL WITHOUT ANY
SPACES, I.E. "123" OR "-17".

"$X" SERIES - THESE ARE SHORT-CALLABLE (V-MODE ONLY) VERSIONS OF COMMON
SCIENTIFIC FUNCTIONS WHICH TAKE A SINGLE ARGUMENT IN THE
SINGLE OR DOUBLE PRECISION FLOATING ACCUMULATOR. AVAILABLE
ARE: SINX, COSX, ATANX, EXPX, SRQTSX, ALOGSX, DS1NSX,
DCOS$X, DATN$X, DEXPSX, DSQRJX, AND DLOGSX.

V-MODE THE FOLLOWING ROUTINES ARE NOW AVAILABLE IN V-MODE : C$P02,
0&AL06, 1.SAA01, ISAP02, OSAP02, P1IN, P10U, P1IB AND P10B.

MODIFIED ROUTINES:

FSAT A NEW VERSION OF THIS ROUTINE (THE R-MODE ARGUMENT TRANSFER
SUBROUTINE) WRITTEN BY BERNIE STUMPF IS ABOUT TWICE AS FAST
AS THE OLD VERSION. A LOT OF TIME IS TRADITIONALLY SPENT IN
THIS ROUTINE IN R-MODE PROGRAMS. IT ALSO PRESERVES THE A AND
R REGISTERS AND THE FLOATING ACCUMULATOR, ALLOWING
SUBROUTINES WITH ARGUMENTS TO STILL PICK UP REGISTER CONTENTS
USING THE -SPO OPTION IN FORTRAN.

TBUFIN THIS ROUTINE, CALLED PY TIDEC, TIOCT AND TIHEX, HAS BEEN
UPDATED TO PROPERLY HANDLE ERASE AND KILL CHARACTERS.

I$AA12 TWO BUGS IN ERASE AND KILL HANDLING WERE FIXED, AND SOME

PAGF

SPEED-UPS MADE.

0SAL06 A BUG CONCERNING DATA PRODUCTS PRINTERS WAS FIXED.

CONTRL CHANGED TO TAKE THE ERROR RETURN WHEN PASSED A BAD UNIT
NUMBER, OR GIVE A MESSAGE IF NO RETURN IS PROVIDED.

F$IO INCORRECT OUTPUT OF FN.CN-1) IN THE FORTRAN iTo PACKAGE
FIXED.

MAGTAPE ROUTINES - UPDATED TO (1) NOT LOOP WAITING FOR I/O, CT) DO~
BETTER ERROR RECOVERY. THE REV. 15 VERSIONS SIMPLY RETRIED
20 TIMES AND GAVE UP IF THEY WERE UNSUCCESSFUL AT DOING THEIR
I/O. THE NEW VERSIONS RETRY READ IN THE SAME FASHION BUT
ONLY 5 TIMES. WRITES ARE RETRIED ONCE, AND IF THAT FAILS THE
TAPE IS ASSUMED TO HAVE A BAD SPOT. THE ROUTINES BACK OVER
THE BAD SPOT AND WRITE BLANK TAPE, THEN TRY AGAIN, UP TO 10
TIMES, OR ABOUT 30 INCHES OF TAPE. (3) THE V-MODE VERSIONS
OF THE 7-TRACK AND EBCDIC ROUTINES NO LONGER HAVE A
LIMITATION ON RECORD SIZE AS THEY ALLOCATE THEIR WORK BUFFER
AS NEEDED, RATHER THAN USING ONE OF FIXED SIZE. JOEL
JENNINGS HELPED WITH THESE ROUTINES.

E$XX FIVE OF THE EXPONENTIATION ROUTINES HAVE BEEN REWRITTEN TO
REPLACE SLOWER REV. 15 VERSIONS. THEY ARE: E$11, E$51,
E$71, E$77, AND ES57.

LTABS THIS ROUTINE, CLAIMED TO BE THOROUGHLY OBSOLETE AND UNUSED BY
RUSS BARBOUR AND BERNIE STUMPF, WAS DELETED FROM THE LIBRARY.

F$BN THE FORTRAN REWIND ROUTINE WAS REWRITTEN, IN FORTRAN, TO GIVE
BETTER ERROR MESSAGES.

PACK ANOTHER OBSOLETE ROUTINE, DELETED AFTER CONSULTATION WITH THE
ABOVE-MENTIONED STC'S.

F$IOER REWRITTEN IN FORTRAN.

SUBJECT: CMPF & MR6F BUG FIXES

A FIX IS BEING MADE TO BOTH THE CMPF & THE MRGF COMMANDS TO FIX A BUG
IN FILE NAME ARGUMENT PROCESSING. THIS BUG OCCURRED ONLY WHEN MORE
THAN THREE INPUT FILE NAMES WERE SPECIFIED TO EITHER CMPF OR MRGF.

RPG FOR REV16.00

I. BUG FIXES

A. TAR81303
ONCE A FILE HAS EXPERIENCED AN UNSUCCESSFUL CHAIN OPERATION,
ALL
9»S

DATA FIELDS PERTAINING TO THAT FILE WILL BE
THROUGHOUT THE DURATION OF THE PROGRAM RUN.

FILLED WITH

B. TAR25232 AND TAR25226
IF A FILE IS SPECIFIED AS BEING IN ASCENDING SEQUENCE (AN A
IN COLUMN 18 OF THE FILE SPECS) AND IF PACKED DATA IS
CONTAINED
UNPACKED.

AND REFERENCED, THE DATA IS TREATED AS IF IT WERE

TAR UNKNOWN
MVR DOES NOT FUNCTION PROPERLY WHEN THE NUMBER OF DIGITS IN
THE DIVIDEND IS LESS THAN THE NUMBER OF DIGITS IN THE
DIVISOR.

TAR25234 AND TAR81301
AN EXECUTION TIME ARRAY WITH PACKED DATA IN CONJUNCTION WITH
THE INPUT SPEC STATEMENT, WITHOUT NUMBER OF DECIMAL POSITIONS
SPECIFIED (AS IT SHOULD NOT BE WHEN THE ARRAY IS DECLARED BY
ONE INPUT SPEC STATEMENT) WILL GIVE AN
ERROR MESSAGE.

==INC0NSISTENT USAGE==

TAR25231
FIELDS WITH A LENGTH OF TWO OR LESS ARE NOT EDITED IN
ACCORDANCE WITH THE EDIT CODES. ___

TAR15185 AND TAR25224
EDIT CODES NOT FUNCTIONING PROPERLY

G. TAR25225
LOKUP OPERATION ONLY WORKS PROPERLY WHEN THE TABLE IS IN
ASCENDING SEQUENCE.

TAR25227
AN UNSUCCESSFUL CHAIN OPERATION CAUSES A KIDA 07 ERROR
MESSAGE TO BE DISPLAYED ON THE USER TERMINAL.

I. TAR155 26
NO STATEMENT TYPE SEQUENCING IS DONE DURING COMPILATION.

_ _ _ _ _ _ _ _

ARITHMETIC OPERATIONS TRUNCATE SIGNIFICANT DIGITS DURING
COMPUTATION.

K. TAR25228
DIVISION BY ZERO SETS RESULTING FIELD EQUAL TO DIVIDEND
RATHER THAN TO ZERO.

L. TAR UNKNOWN
CHAIN OPERATION RETRIEVES NEXT RECORD IN SEQUENCE IF THE
CHAIN WERE UNSUCCESSFUL.

__ ________

SETLL POSITIONS THE DEMAND FILE TO END OF FILE RATHER THAN
NEXT HIGHER KEY IF AN EXACT MATCH WERE NOT FOUND ON THE KEY.

Ni TAR15183
A RECORD WITH NO FIELDS DEFINED TAKES THE FIELDS FOR THE NEXT
RECORD AND DROPS THE RECORD IDENTIFIER APPLICABLE TO THE
FIELDS IT TAKES.

II. ENHANCEMENTS
A. AS SUGGESTED BY TAR15180, A HEADING LINE, PRINTED AT THE TOP
OF EACH PAGE OF THE RPG COMPILATION LISTING, WHICH CONTAINS RPG

REV NUMBER,- INPUT SOURCE FILE NAME,
COMPILATION, HAS BEEN ADDED.

AND THE DATE AND TIME OF

B. THE HALF-ADJUST
BEEN IMPLEMENTED.

('H' IN COLUMN 53 OF THE CALCULATION LINE) HAS

NOTES:
=HALF-ADJUST CAN ONLY BE USED WITH ARITHMETIC OPERATIONS.
=HALF-ADJUST CANNOT
DIVISION FOLLOWED BY

BE USED WITH AN MVR OPERATION OR A

AN MVR.
=HALF-ADJUST IS VALID ONLY FOR
THAN ZERO DECIMAL POSITIONS IN

NUMERIC FIELDS WITH
THE RESULT FIELD.

GREATER

OPERATIONALLY, THE HALF-ADJUST OPTION PERFORMS A ROUNDING
OPERATION ON THE RESULT FIELD. TO ACHIEVE HALF-ADJUST, + OR
- 5 (DEPENDING UPON THE SIGN OF THE RESULT) IS ADDED TO THE
DIGIT IMMEDIATELY TO THE RIGHT OF THE RIGHTMOST RESULTING
DFCIMAL POSITION.

EXAMPLE:
RESULT IS 1.25618
RESULTING FIELD IS TO BE A WITH 2 DECIMAL POSITIONS

SO, 1.25618 + 0.00500 = 1.26118
THEN THE DIGITS TO THE RIGHT OF THE RIGHTMOST RESULTANT
DIGIT ARE DROPPED, GIVING THE FINAL RESULT OF 1.26.

SUBJECT: MAJOR CHANGES TO THE REV. 16 PIASTER DISK

THE FOLLOWING COMMANDS HAVE BEEN REMOVED FROM THE REV, 16 MASTER
DISK: LOADED, MCG. LOAD20 IS A VERSION OF THE LOADER FOR USE UNDER A
16K VERSION OF PRIMOS 2. ANYONE STILL USING IT SHOULD NOW USE LOAD
INSTEAD. MCG IS THE MICROCODE ASSEMBLER FOR THE PRIME 300 AND IS NO
LONGER SUPPORTED.

THE FOLLOWING COMMANDS WILL BE REMOVED FROM THE MASTER DISK AT REV.
17: CNVTMA, HILOAD, PUSS. CNVTMA IS A UTILITY TO CONVERT LOADMAPS
GENERATED BY HILOAD FOR USE BY PSD. IT WILL NO LONGER BE USEFUL WHEN
HILOAD IS REMOVED. HILOAD IS AN OBSOLETE VERSION OF THE LOAD COMMAND.
USERS SHOULD CONVERT THEIR COMMAND FILES TO USE LOAD BY REV. 17. PUSS
15 A SOURCE FILE COMPARE PROGRAM THAT HAS THE SAME FUNCTIONALITY AND
MUCH SLOWER SPEED THAN CMPF. USERS SHOULD SWITCH TO CMPF BY REV. 17.

STARTING AT REV. 16, THE CURRENT MASTER DISK WILL NOT BE SHIPPED TO
PRIME 100, 200 AND 300 CUSTOMERS. THEY WILL RECEIVE THE REV. 15
MASTER DISK. ANY BUGS REPORTED FOR THAT VERSION OF THE MASTER DISK
WILL BE INVESTIGATED, FIXED, AND RELEASED AS AN UPDATE TO THE REV. 15
MASTER DISK. AS A RESULT, THE FOLLOWING SOFTWARE, WHICH IS ONLY USEFUL
TOR PRIME TOUT 200 AND 300 CUSTOMERS, HAS BEEN REMOVED FROM THE REV.
16 MASTER DISK: ALL VERSIONS OF PRIMOS 7- AND THE RDOS AND SDOS
VERSIONS OF PRIMOS 2. FURTHERMORE, THE FOLLOWING SOFTWARE HAS BEEN
MOVED FROM THE B1 MASTER DISK PARTITION TO THE A1 MASTER DISK
PARTITION: PRIMOS 4, SEG, VPSD, VPSD16, AND FORTRAN LIBRARY. ALL
SOFTWARE FORMERLY FOUND IN UFD LIB AND SYSTEM ON PARTITION B1 HAS BEEN
MOVED TO THE CORRESPONDING UFD'S ON PARTITION A1.

STARTING AT REV. 16, THE SHARED LIBRARIES WILL BE DEFAULT. THE SHARED
LIBRARIES ARE: PFTNLB, VCOBLB, VKDALB, AND VFORMS IN UFD LIB. TO
WORK, THE SHARED LIBRARIES MUST BE INSTALLED AT PRIMOS SYSTEM STARTUP
TIME USIN6 THE SHARE COMMAND AS DESCRIBED IN THE PRIMOS DOCUMENTATION
FOR REV. 16. THE SHARED LIBRARIES CONSIST OF SEVERAL FILES FOR EACH
LIBRARY. DO NOT SHARE THE ABOVE NAMED FILES. NOTE THAT UNLESS SHARED
LIBRARIES ARE INSTALLED, THE FOLLOWING THINGS WILL NOT RUN: COBOL
COMPILER, DBMS COMMANDS, ED, CX, MQL AND MSCH WHICH COMPRISE THE MIDAS
QUERY LANGUAGE, AND BASICV.

THE NONSHARED LIBRARIES ARE SUPPLIED IN UFD LIB FOR THOSE THAT WISH TO"
USC THEM. THEY ARE NPFTNLB AND IFTNLB FOR THE FORTRAN LIBRARY, NVCOBLB
FOR THE COBOL LIBRARY, NVKDALB FOR THE KIDA LIBRARY AND NVFORMS FOR THE
FORMS LIBRARY. NOTE THAT USING THE SHARED FORMS LIBRARY REQUIRES A
SMALL SOURCE CHANGE TO PROGRAMS THAT USE IT.

AT REV. 16, THE COMMAND ED WILL BE SHARED BY DEFAULT. TO USE ED, THF
SHARED LIBRARIES MUST BE INSTALLED AND THE FOLLOWING COMMAND MUST BE
GIVEN AT THE SUPERVISOR CONSOLE: SHARE SYSTEM>ED2000 2000.

TO EDIT FILES UNDER PRIMOS 2, USE THE COMMAND NSED. AN ATTEMPT TO USE

PAGE 2

ED UNDER PRIMPS 2 WILL CAUSE THE MACHINE TO HALT.

SUBJECT: MODIFICATIONS TO RUNOFF FOR 16..2

1) RBAR HAS BEEN MODIFIED AND WILL NOW WORK CORRECTLY. RUNOFF USED TO
PRINT AN EXTRA RBAR IF THE RBAR OFF COINCIDED WITH THE BEGINNING OF A
NEW OUTPUT LINE. TAR 11200 DEALT WITH THIS PROBLEM

2) UNDERSCORE NO LONGER MISSES ONE SPACE IN ADJUST MODE.

3) ADJUST MODE DID NOT ALWAYS ADJUST QUITE RIGHT WHEN DEALING WITH
UNDERLINED TEXT THAT ALSO INCLUDED PHANTOM HYPHENS. THIS HAS BEEN
CORRECTED.

A) IF A BREAK HAPPENED TO COINCIDE WITH THE LEFT MARGIN AFTER A HANGING
INDENT THE BREAK DID NOT TAKE EFFECT. THIS HAS BEEN CORRECTED.

5) IF THE COMMAND ERRGO HAS BEEN GIVEN AND ERRORS DO OCCUR, RUNOFF WILL
NOW EXIT NORMALLY SO THAT COMMAND OR PHANTOM FILES WILL CONTINUE TO
RUN. THE ERRORS ARE STILL FLAGGED.

6) ILLEGAL AND UNRECOGNIZED COMMAND MESSAGES WILL NOW LIST THE
NUMBER AND FILE IN WHICH THE ERROR WAS FOUND. OTHER ERRORS WILL
NOW GIVE THE NAME OF THE FILE THAT CAUSED THE ERROR.

LINE
ALSO

SUBJECT: CHANGES_T0_SORT AND SQSI-LIBBARIES

A. VSRTLI CHANGES AT REVS 15.5 AND 16.2

THE FOLLOWING BUG HAS BEEN FIXED:

IF THE COMMON BLOCK EB$A WAS LOADED AT WORD 0 OF ANY SEGMENT,
THE SORT WOULD HAVE UNPREDICTABLE RESULTS.

THE FIX WAS MADE IN THE ROUTINE VGETLL.

THIS FIX IS IN RESPONSE TO TAR 19975.

B. SORT CHANGES AT REVS 15.A AND 16.1

THE FOLLOWING BUG HAS BEEN FIXED:

THE SORT COMMAND WOULD NOT ALLOW 8, 9, 18, OR 19 KEYS.

THE FIX WAS MADE IN THE ROUTINE SETSIZ ON UFD LIB7. THE SORT
COMMAND SHOULD BE REBUILT WITH THE CORRECTED ROUTINE.

THIS FIX IS IN RESPONSE TO TAR 15451.

C. VSRTLI (V-MODE SORT LIBRARY) CHANGES AT REVS 15.3 AND 16.0

1. FOR CONSISTENCY WITH THF R-RODE SORT LIBRARY, CALLS TO THE
SUBROUTINE ASCSRT MAY NOW BE MADE AS CALLS TO THE SUBROUTINE
ASCSSS.

2~. THE V-MODE SORT LIBRARY 'S INTERNAL ROUTINE SPACE HAS BEEN
RENAMED SPAC$S TO AVOID NAMING CONFLICTS WITH USERS.

~D̂ NAMING CONVENTION FOR REV 17 AND BEYOND

1. ADOPTION OF A NAMING CONVENTION SIMILAR TO THAT OF THE
APPLICATION LIBRARY WILL BE BENEFICIAL IN AVOIDING THE
POSSIBILITY OF A CONFLICT WITH USER WRITTEN ROUTINES AND SYSTEM
ROUTINES.

2. EXISTING ENTRY POINTS: SUBSRT, ASCS$$, ASCSRT (V-MODE ONLY),
AND COMMON BLOCK NAMES: EB$1, £B$2, EB$3, EB$A, EB$5,
WILL NOT BE CHANGED, BUT ALL OTHER NAMES WILL END WITH THE
SUFFIX "$S".

PAGE

SUBJECT: BUG flXES TO MAGSAV AND MAGRST FOR REVISION 16

THE
REVISION

FOLLOWING
16:

CORRECTIONS WERE ri A D £ TO MAGSAV AND MAGRST FOR

1. MAGRST PRINTS AN ERROR MESSAGE AND PAUSES WHEN IT DETECTS THAT
THE TAPE HAS GONE OFFLINE. PREVIOUSLY THE PROGRAM ATTEMPTED
ERROR RECOVERY INDEFINITELY,

2. MAGRST CONVERTS COMMAND LINES TO UPPERCASE WHEN READING
TREENAMES FOR A PARTIAL RESTORE.

3. THE ERROR MESSAGE FOR RECOVERED TAPE
BEFORE THE INDEX FILE IS CLOSED.

ERRORS IS
THE ERROR

PRINTED
MESSAGE

OUT
WILL

APPEAR BOTH ON THE TERMINAL AND IN THE
CHANGE WAS MADE FOR MAGSAV AND MAGRST.

INDEX FILE THIS

THE REEL NUMBER IS DISPLAYED WHEN MAGRST
TAPE TO BE MOUNTED.

ASKS FOR THE NEXT

THE PREVIOUS VERSION OF MAGSAV STOPPED WITH 'STOP :1101» WHEN
AN ERROR WAS DETECTED WHILE WRITING THE TWO FILE MARKS AT THE
LOGICAL END OF TAPE. THE PROGRAM NOW TRIES UP TO TEN TIMES TO

:1101 • WRITE THE FILE MARK.
AS BEFORE. IF IT
MESSAGE AND CONTINUES

IF IT FAILS, IT STOPS WITH »STOP
SUCCEEDS, IT PRINTS THE FOLLOWING ERROR

DUE TO BAD TAPE, ADDITIONAL TAPE MARKS WERE ADDED TO THE
END LOGICAL TAPE. DO NOT APPEND OTHER MAGSAV LOGICAL
TAPES TO THIS REEL.

SUBJECT: EPI TOR CHANGES FOR 16.2

THE FOLLOWING CHANGES HAVE BEEN MADE TO THE EDITOR:

1)FIND AND NFIND WILL NOW WORK IF YOU ARE LOOKING FOR BLANKS OR
NON-BLANKS BEYOND THE END OF MOST LINES.

NFC73)
LOOKING FOR LINES THAT DID NOT HAVE

PREVIOUSLY IF YOU SAID

A BLANK IN COLUMN 73. EDITOR
STOPPED AT ANY LINE SHORTER THAN
CONTAINING A CHARACTER IN COLUMN

73 COLUMNS,
73. SIMILARLY
F(73)

AS WELL AS AT LINES

WOULD NOT HAVE FOUND LIMES SHORTER THAN 73 COLUMNS. NOW THE EDITOR
WILL ONLY FIND THOSE LINES THAT ACTUALLY HAVE SOMETHING PRINTED IN
COLUMN 73 FOR NFIND AND WILL FIND THOSE SHORTER THAN 73 FOR FIND.

2) IF YOU TYPE A COMMAND THAT GIVES YOU THF ERROR
WILL STILL BE POSITIONED AT THE SAME PLACE
COMMAND. PREVIOUSLY THE POINTER WAS ADVANCED ONE

MESSAGE BAD L OR YOU
AS WHEN YOU GAVE THE

LINE WHEN AN L WAS
TYPED BEFORE CHECKING IF THE COMMAND WAS VALID. THE EDITOR WILL NOW
CHECK FIRST FOR CORRECT SYNTAX AND LEAVE THE POINTER POINTED TO WHERE
IT WAS WHEN THE COMMAND WAS GIVEN.

3) IF YOU HIT CONTROL-P OR BREAK WHILE IN EDITOR THE BREAK WILL NOT
TAKE EFFECT WHILE FILE POINTERS ARE BEING UPDATED. THIS SHOULD INSURE
THAT THE FILE WILL NOT OE BROKEN BECAUSE OF A BREAK. THE USER MAY HAVE
TO WAIT A LITTLE LONGER FOR THE BREAK TO BE ACKNOWLEDGED. HE WILL
STILL HAVE TO DO A WHERE TO FIND OUT WHERE IN THE FILE HE IS CURRENTLY
LOCATED. IF HE HIT BREAK DURING A GLOBAL CHANGE,, SOME OF THE CHANGES
MAY HAVE OCCURRED AND SOME NOT.

A) TYPING
FILENAME

AN UNLOAD OR
BUT TYPING A

DUNLOAD
NUMBER

COMMAND AND
FOR LINES TO

FORGETTING TO GIVE A
MOVE WILL NOW CAUSE THE

EDITOR TO ISSUE AN ERROR MESSAGE PERTAINING TO A FILE UNIT. IF THE
NUMBER IS LFSS THAN 5 THE MESSAGE IS "BAD FILE UNIT" BECAUSE THE EDITOR
USES THE FIRST FOUR FILE UNITS, IF 5 OR GREATER THE ERROR MESSAGE WILL
BE "UNIT NOT OPEN
TO UNLOAD TO A
PE-TN-74 REV.3)

FOR WRITING'
FILE UNIT

THIS IS BECAUSE THE EDITOR ALLOWS ONE
THAT HAS BEEN PREVIOUSLY OPENED. (SEE

PAGE

EDITOR CHANGES FOR REV. 16.2

5) THE SHARED EDITOR SETS UP ITS OWN STACK HEADER BUT DID NOT SET THE
PB AND LB RETURNS, THIS WAS CAUSING PROBLEMS WITH THE REV 17 COMMAND
ENVIRONMENT. THIS HAS BEEN CORRECTED.

6) MODE PROMPT CAUSED THE COLUMN HEADING BANNER PRINTED WITH MODE
COLUMN TO BE OFF BY 2 COLUMNS WHEN IT WAS PRINTED IN INPUT MODE WHEN
THE EDITOR IS IN MODE PROMPT. THIS HAS BEEN CORRECTED BY MOVING THE
BANNER OVER 2 COLUMNS WHEN IN MODE PROMPT. IT SHOULD BE REMEMBERED
THAT THE BANNER WILL NOT APPEAR LINED UP CORRECTLY WITH LINES THE
EDITOR PRINTS IN EDIT MODE SINCE THESE STILL START IN COLUMN 1- (TAR
14505)

EXAMPLE:
MODE PROMPT
$ MODE COLUMN
$
INPUT

123456789012345 678901234567 890123456789012345 67890123 4567890123456789
& THIS IS AN EXAMPLE

EDIT
S P
THIS IS AN EXAMPLE

PAGE

DATE: DEC-EMBER 1 , 1 9 7 7

SUBJECT: CMPF AND MRGF COMMANDS

TWO NEW COMMANDS HAVE BEEN PROVIDED TO HELP EASE THE PROBLEMS OF
PARALLEL SOFTWARE DEVELOPMENT. CMPF PROVIDES A F A C I L I T Y SIMILAR TO THE
PUSS COMMAND, EXCEPT THAT I T RUNS FASTER THAN PUSS AND PRODUCES MORE
MEANINGFUL OUTPUT THAN PUSS. THE MRGF COMMAND I S A POWERFUL TOOL
DESIGNED TO ALLOW AUTOMATED MERGING OF PROGRAM CHANGES. MRGF OBVIATES
THE NEED FOR TEDIOUS EDIT ING OF PROGRAMS WHEN TWO (OR MORE) SETS OF
CHANGES MADE TO A PROGRAM ARE TO BE COMBINED. I T I S EXPECTED, HOWEVER,
THAT THE RESULTANT MERGED OUTPUT WILL BE EXAMINED CAREFULLY BEFORE I T
IS USED .

PAG! 7

CMPF NOEL I. MORRIS NOVEMBER 21, 197?

THE CMPF COMMAND ALLOWS A USER TO
ORIGINAL FILE IS TREATED AS

SHOWING LINES THAT WERE ADDED TO,
ORIGINAL FILE IN THE OTHER FILES.

COMPARE
FTTTT

UP TO
CMPF

CHANGED FROM

FIVE ASCII
COMMAND

FILES
PRODUCES

ONE

OR DELETED
OUTPUT

FROM THE

USAGE:
CMPF FILEA FILEB CFILEC F1LEE3 [-CONTROL ARGS3

FILEA THROUGH FILEE ARE THE TREE NAMES OF THE FILES TO BE COMPARED.

CONTROL ARGS:

-MINL # SETS THE MINIMUM NUMBER OF LINES WHICH MUST MATCH FOLLOWING
DISCREPANCY
-MINL 3.

IN ORDER TO RESYNCH ALL FILES THE DEFAULT VALUE IS

•BRIEF (OR -BF) SUPPRESSES THE PRINTING OF DIFFERING LINES.
FILE IDENTIFICATION AND LINE NUMBERS ARE PRINTED.

ONLY THE

-REPORT REPORT_FILE_NAME PRODUCES A FILE CONTAINING THE DISCREPANCIES
INSTEAD OF PRINTING THEM OUT ON THE USER'S TERMINAL.

OPERATION: ~~ ~ " "

FILEA IS TREATED AS AN ORIGINAL FILE (I.E. AS A FILE WHICH IS THE
COMMON
LINE WI
FILEA A

ANCES
TH EAC
ND ANY

TOR OF
H OF THE
OTHER F

FILEB TH
OTHER FIL

ILE, CMPF

ROUGH
ES. W
ATTEMP

FILEE)
HEN A
TS TO

. FIL
DISCRE
GET AL

EA IS
PANCY
L FILE

COMPA
IS FO
S BAC

RED L
UNO B
K IN

INE BY
ETWEEN
SYNCH.
LINES
-MINL
WHICH

REMATCH
MATCH
CONTROL

ING IS
IN AL
ARGUM

COMPLFT
L FILES
ENT. AF

ED ONLY WH
THIS M

TER RESYNC

EN A C
INIMUM
HRONIZ

ERTAIN
NUMBE
ATION

MINI
R IS S
IS C

MUM N
ETTABL
OMPLET

UMBER
F WIT
E, L

OF
H THE
1NES

DIFFER
COMPARI
FILEA I

BETWE
SON CO
S IDEN

EN FILE
NTINUES.
TIFIED B

A AND ANY
WHEN THE

Y PRECEDIN

OF THE
DISCR

G IT W

OTHER
EPANCY
ITH TH

FILES
IS RE

E LETT

ARE R
PORTED
ER "A"

EPORT
, EAC

AND

ED, A
H LIN

THE

ND THE
E FROM

LINE
NUMBER OF THAT LINE. LINES OF FILEB THROUGH FILEE ARE SIMILARLY
IDENTIFIED, USING THE LETTFRS "BM THROUGH "E", RESPECTIVELY. THE
-BRIEF CONTROL ARGUMENT CAUSES ONLY THE FILE IDENTIFICATION LETTER AND
THE LINE NUMBERS OF THE DIFFERING LINES TO BE PRINTED,

NOTES:

THE CMFF COMMAND COMPARES COMPRESSED LINES OF ANY LENGTH.
THE FILES OF COMMON ANCESTRY WILL CONTAIN LINES COMPRESSED

IT ASSUMES
IN IDENTICAL

FASHION. IT IS, HOWEVER, POSSIBLE FOR A MISMATCH TO OCCUR BETWEEN TWO
LINES WHICH APPEAR IDENTICAL, BUT WHICH WERE COMPRESSED DIFFERENTLY.
THIS POSSIBILITY IS CONSIDERED TO BE RFMOTE.

THE -REPORT CONTROL ARGUMENT OF CMPF MAKES USE OF THE COMMAND OUTPUT
(COMO$$) MFCHANISM OF PRIMOS. A CMPF WHICH PRODUCES A REPORT FILE

FILE SHOULD,
USE.

THEREFORE, NOT BE INVOICED WITH A COMMAND OUTPUT ALREADY IN

EXAMPLE:

r.Hiac

CONSIDER THE FOLLOWING TWO FILES

FILEA

THF
QUICK
BROWN
FOX
JUMPS
OVER

FILEB

THE
NASTY
BROWN
FOX
JUMPS
OVER

THE
LAZY
DOG

THE
DOG

A CPIPF OF THESE TWO FILES WOULD PRODUCE THE FOLLOWING OUTPUTr

A2 QUICK
CHANGED TO
B2 NASTY

A8 LAZY
DELETED BEFORE

B8 DOG

COMPARISON FINISHED.
2 DIS C R £ P A N CI E S F 0 U N D -

~ PAGE ?

MRGF NOEL I. MORRIS NOVEMBER 23, 1977

THE MRGF COMMAND ALLOWS A USER TO MERGE BETWEEN TWO AND FIVE ASCII
FILES. ONE FILE IS TREATED AS AN "ORIGINAL" FILE TO WHICH CHANGES HAVE
BEEN MADE IN THE OTHER FILES- UNCHANGED LINES AND UNCONFLICTING
CHANGES BETWEEN FILES ARE COPIED AUTOMATICALLY INTO THE OUTPUT FILE.
WHEN CONFLICTS EXIST, THE USER CAN BE QUERIED TO RESOLVE THE CONFLICT
MANUALLY.

MRGF IS ESPECIALLY USEFUL FOR COMBINING DIFFERENT CHANGES TO A PROGRAM
WHICH HAVE BEEN MADE IN PARALLEL BY SEVERAL PROGRAMMERS. IT CAN ALSO
BE USEFUL FOR DISTRIBUTING SOFTWARE CHANGES TO OTHER SITES.

USAGE:
MRGF ORIGFILE FILEB CFILEC ... FILLED OUTPUTFILE C-CONTROL_ARGS3

ORIGFILE IS THE TREE NAME OF THE "ORIGINAL" FILE. FILEB THROUGH FILEE
ARE TREE NAMES OF FILES WHICH TRACE THEIR ANCESTRY TO ORIGFILE.

OUTPUTFILE IS THE TREE NAME OF THE MERGED OUTPUT FILE.

CONTROL ARGS:

-MINL M SETS THE MINIMUM NUMBER OF LINES WHICH MUST MATCH FOLLOWING A
DISCREPANCY IN ORDER TO RESYNCH ALL FILES. THE DEFAULT VALUE IS
-MINL 3.

-FORCE CAUSES FILEB TO BE A "PREFERRED" FTLE WHEN CONFLICTS EXIST
BETWEEN SEVERAL FILES. WHEN -FORCE IS USED, THE USER OF MRGF IS
NEVER QUERIED TO RESOLVE A CONFLICT (SEE BELOW).

-BRIEF (OR -BF) SUPPRESSES THE PRINTING OF CONFLICTING LINES. ONLY THE
FILE IDENTIFICATION AND LINE NUMBERS ARE PRINTED.

-REPORT REPORT FILE NAME PRODUCES A FILE CONTAINING THE DISCREPANCIES
FOUND BETWEEN' FILES DURING THE MERGE. RESOLVABLE DISCREPANCIES
ARE NOT DISPLAYED ON THE USER'S TERMINAL. UNRESOLVABLE
DISCREPANCIES WILL BE PLACED IN THE REPORT FILE AS WELL AS
DISPLAYED ON THE USER'S TERMINAL.

OPERATION:

ORIGFILE IS TREATED AS AN ORIGINAL FILE (I.F. AS A FILE WHICH IS TW
COMMON ANCESTOR OF FILEB THROUGH FILEE). ORIGFILE IS COMPARED LINE BY
LINF WITH EACH OF THE OTHER FILES. LINES WHICH MATCH IN ALL FILES ARE
COPIED INTO OUTPUTFILE AUTOMATICALLY. WHEN A DISCREPANCY IS FOUND
BETWEEN ORIGFILE AND ANY OTHER FILE, MRGF ATTEMPTS TO GET ALL FILES
BACK IN SYNCH. REMATCHING IS COMPLETED ONLY WHEN A CERTAIN MINIMUM
NUMBER OF LINES MATCH IN ALL FILES. THIS MINIMUM NUMBER IS SETTABLE
WITH THE -MINL CONTROL ARGUMENT.

AFTER RESYNCHRONIZATION IS COMPLETE, SELECTION OF LINES TO BE OUTPUT
MUST TAKE PLACE. IF ONLY ONE FILE DIFFERED FROM ORIGFILE, THE CHANGES
IN THAT FILE ARE COPIED INTO OUTPUTFILE AUTOMATICALLY. IF ALL FILES
DIFFERED IDENTICALLY FROM THE ORIGINAL, THOSE CHANGES ARE ALSO COPIED
AUTOMATICALLY. IF CONFLICTING CHANGES ARE FOUND IN SEVERAL FILES, (OR
IF ONLY ONE FILF IS BEING MERGED WITH THE ORIGINAL), THE USER CAN
SELECT MANUALLY WHICH LINES ARE TO BE COPIED INTO OUTPUTFILE. IF THE
-FORCE CONTROL ARGUMENT IS USED, SUCH CONFLICTS ARE RESOLVED

f J A b t

AUTOMATICALLY. THE USER IS NOT QUERIED, AND THE CHANGES IN FILEB ARE
TAKEN AS THE "PREFERRED" CHANGES TO BE INSERTED INTO OUTPUTFILE.

IF THE -FORCE CONTROL ARGUMENT IS NOT USED, THE DIFFERING LINES FROM
EACH OF THE FILES ARE REPORTED. EACH LINE FROM ORIGFILE IS IDENTIFIED
BY PRECEDING IT WITH THE LETTER "A" AND THE LINE NUMBER OF THAT LINE.
LINES OF FILEB THROUGH FILEF ARE SIMILARLY IDENTIFIED, USING THE
LETTERS "B" THROUGH "E", RESPECTIVELY. THF -BRIEF CONTROL ARGUMENT
CAUSES ONLY THE FILE IDENTIFICATION LETTER AND THF LINE NUMBERS OF THE
DIFFERING LINES TO BE PRINTED. AFTER AN UNRESOLVABLE DISCREPANCY IS
REPORTED, EDIT MODE IS ENTERED TO ALLOW THE USER TO SELECT LINES TO BE
PLACED IN OUTPUTFILE (SEE BELOW). AFTER SELECTION (EITHER AUTOMATIC OR
MANUAL) IS COMPLETED, THE LINE BY LINE COMPARISON CONTINUES.

IF THE -REPORT CONTROL ARGUMENT IS USED, THE RESULTANT REPORT FILE
CONTAINS ALL DISCREPANCIES BETWEEN FILES THAT IS, BOTH THE
RESOLVABLE AND THE UNRESOLVABLE DIFFERENCES. UNRESOLVABLE DIFFERENCES
ARE ALWAYS DISPLAYED ON THE USER'S TERMINAL AS WELL. RESOLVABLE
DIFFERENCES ARE, HOWEVER, NEVER DISPLAYED ON THE USER'S TERMINAL. THE
ACTION TAKEN BY MRGF (OR THE USER) IS PLACED IN THE REPORT FILE
FOLLOWING EACH DISCREPANCY.

MANUAL SELECTION:

AFTER EACH UNRESOLVABLE DISCREPANCY IS DISPLAYED, EDIT MODE IS ENTERED.
THE USER MUST SELECT WHICH LINES ARE TO BE INSERTED INTO OUTPUTFILE BY
ISSUING THE FOLLOWING COMMANDS:

A INSERT ALL OF THE DIFFERING LINES IN ORIGFILE.
B INSERT ALL OF THE DIFFERING LINES IN FILEB.
C INSERT ALL OF THE DIFFERING LINES IN FILEC.
D INSERT ALL OF THE DIFFERING LINES IN FILED.
E INSERT ALL OF THE DIFFERIN6 LINES IN FILEE.
AN INSERT LINE N OF ORIGFILE.
BN • INSERT LINE N OF FILEB. (SIMILARLY FOR FILEC THROUGH

FILEE) _ _ _ _ _ _ _
AM,N INSERT LINES M THROUGH N OF ORIGFILE. (SIMILARLY FOR

FILEB THROUGH FILEE)
PA PRINT ALL OF THE DIFFERING LINES IN ORIGFILE.

(SIMILARLY FOR FILEB THROUGH FILEE)
PAN PRINT LINE N OF ORIGFILE. (SIMILARLY FOR FILEB THROUGH

FILEE)
PAM,N PRINT LINES M THROUGH N OF ORIGFILE. (SIMILARLY FOR

FILEB THROUGH FILEE)
OOPS UNDO ALL PREVIOUS EDITING FOR THIS DISCREPANCY.
GO TERMINATE EDITING AND PROCEED WITH MERGE.
QUIT TERMINATE EDITING, CLOSE ALL FILES, AND EXIT FROM MRGF.

IN ADDITION TO THE ABOVE, NEW TEXT CAN BE INSERTED AT ANY POINT IN A~
DISCREPANCY BY ENTERING A BLANK LINE. INPUT MODE IS ENTERED, AND LINES
TYPED WILL BE COPIED INTO OUTPUTFILE. A BLANK LINE WILL TERMINATE
INPUT. NOTE THAT NO TEXT EDITING CAN BE PERFORMED ON LINES WHICH ARE
COPIED OR INPUTTED. NO TAB EXPANSION IS PERFORMED ON INPUTTED LINES.

NOTES:

THE MRGF COMMAND OPERATES ON COMPRESSED LINES OF ANY LENGTH. IT
ASSUMES THAT FILES OF COMMON ANCESTRY WILL CONTAIN LINES COMPRESSED IN
IDENTICAL FASHION. IT IS, HOWEVER, POSSIBLE FOR A MISMATCH TO OCCUR

PAGE

BETWEEN TWO
DIFFERENTLY.

LINES WHICH APPEAR IDENTICAL, BUT WHICH WERE COMPRESSED
THIS POSSIBILITY IS CONSIDERED TO BE REMOTE.

THE -REPORT CONTROL ARGUMENT OF MRGF MAKES USE OF THE COMMAND OUTPUT
(CGMO$$) MECHANISM OF PRIMOS. A MRGF WHICH PRODUCES A REPORT FILE
SHOULD, THEREFORE, NOT BE INVOKED WITH A COMMAND OUTPUT FILE ALREADY IN
USE

EXAMPLE

CONSIDER THE FOLLOWING THREE FILES

FILEA FILEB FILEC

THE THE THE
QUICK
BROWN
FOX

QUICK
RED
FOX

QUICK
BROWN
FOX

JUMPS
OVER
THE

JUMPS
OVER
THE

JUMPS
OVER
THE

LAZY
DOG

SLEEPING
DOG

SNORING
DOG

A MRGF OF THESE FILES WOULD PRODUCE THE FOLLOWING

A8 LAZY
CHANGED TO
BS SLEEPING
BUT ALSO CHANGED TO
C8
EDIT

% B

SNORING

$ GO

MERGE FINISHED
1 MANUAL CHANGE.
1 AUTOMATIC CHANGE AS FOLLOWS

1 FROM FILE B.

IN THE ABOVE EXAMPLE, THE LINES PRECEDED BY A "$" WERE TYPED BY THE
USER. THE MERGED OUTPUT FILE FROM THE ABOVE MRGF WOULD APPEAR AS
FOLLOWS

THE
QUICK
RED ;
FOX
JUMPS
OVER
THE
SLEEPING
DOG vy

NOTE THAT IF THE -FORCE CONTROL ARGUMENT HAD BEEN USED, THE SAME MERGED
OUTPUT WOULD HAVE BEEN PRODUCED. HOWEVER, THE CHANGE FROM FILEB WOULD
HAVE BEEN INSERTED AUTOMATICALLY
QUERIED.

AND THE USER WOULD NOT HAVE BEEN

r ft b t

ACKNOWLEDGEMENT:

THE F1RGF COMMAND IS BASED ON THE MERGE ASCII COWHAND OF MULTICS, WHICH
WAS IMPLEMENTED BY ROBERT E. W.U.LLEN OF HONEYWELL INFORMATION SYSTEMS,
INC. THE ALGORITHMS USED IN THE KRGF COMMAND WERE "BORROWED"
EXTENSIVELY f-ffO.W THOSE DEVELOPED B Y MULLEN.

PAGE

SUBJECT COBOL, REV 15.0

1, iNIBp.DUC.IION

THIS DOCUMENT DESCRIBES THE CHANGES BETWEEN REV 14 AND REV 15 COBOL.
THE COMPILER HAS MANY USER VISIBLE ENHANCEMENTS.

2. LARGER_ADDRESS_SPACE

REV 14 AND BELOW WERE RESTRICTED TO A MAXIMUM OF A 64K BYTE ADDRESS
SPACE. THIS WAS FURTHER CUT DOWN BY 4K BYTES FOR EACH FILE DECLARED
AND FOR EACH ARGUMENT PASSED. THE SIZE OF A DATA ITEM (GROUP OR
ELEMENTARY) COULD NOT EXCEED 4K BYTES.
THESE RESTRICTIONS HAVE BEEN RELAXED OR REMOVED FOR REV 15. THE NEW
CHARACTERISTICS ARE:

THE TOTAL ADDRESS SPACE WHICH A PROGRAM USES NO LONGER HAS AN
EXPLICIT LIMIT.

THE MAXIMUM DATA ITEM SIZE IS NOW 32K BYTES

THE OCCURS COUNT MAY NOT EXCEED 32767.

THERE MAY NOW BE UP TO 126 FILES DECLARED. OBVIOUSLY, THERE
ARE INSUFFICIENT FILE SYSTEM UNITS AVAILABLE TO SUPPORT THIS
MANY FILES OPEN SIMULTANEOUSLY.

NATURALLY, IN R MODE, THE TOTAL PROGRAM + DATA SIZE MUST NOT EXCEED 64K
WORDS. IN 64V MODE, THIS EXTENDED ADDRESSING IS DONE THROUGH COMPILER
GENERATED COMMON BLOCKS.

3. SIRFAMLINED_£QMPjLEB

THE REV 15 COBOL COMPILER IS ROUGHLY TWICE AS FAST AS OLDER COMPILERS.
WORKING SET SIZE HAS ALSO BEEN SIGNIFICANTLY REDUCED, SO COMPILATION
SPEED ON SMALL MEMORY SYSTEMS SHOULD IMPROVE SIGNIFICANTLY.

4. EXTENSIONS

REV 15 COBOL HAS THE FOLLOWING NEW FEATURES

http://iNIBp.DUC.IION

PAGE

OPEN EXTEND FOR SEQUENTIAL DISK FILES

. FULL IF STATEMENTS (EXCEPT ARITHMETIC EXPRESSION OPERANDS)

. V MODE MAG TAPE SUPPORT

5.__BUfi_FIX£S

. COPY STATEMENTS MAY NOW CONTAIN TEXT AFTER THE COPY CLAUSE. IN
THE LISTING FILE THE LINE NUMBERING OF THE COPY FILE IS NOW
INDEPENDANT OF THE LINE NUMBERS OF THE SOURCE. FOR EXAMPLE:

(0069) COPY FILE. VALUE 213.
C000.11 INSERTED
C00Q23 TEXT
C00033
TNNNNT
(0069) COPY FILE. VALUE 213.
(0070) (0071) ETC# ETC, ETC.

.LEVEL 88 (DECIMAL* IS NOW FUNCTIONING PROPERLY FOR ALL CASES.

. COMP-3 USAGE NO LONGER CAUSES 'INCOMPLETE TREE' PROBLEMS.

. SYNTAX ONLY COMPILATION H NO) IS NOW WORKING CORRECTLY. \

. 'DECIMAL POINT IS COMMA[IS FUNCTIONAL IN 64V.

6-__IMP0RlANT_N0TE ~^ ~ '. ~~~~ 3

REV 14 AND EARLIER COBOL LIBRARIES ARE INCOMPATIBLE WITH THE REV 15
COMPILER.

D A T E : NOVEMBER 2 1 , 1 9 7 8

S U B J E C T : £ O R M S A _ R E V . _ 1 6 . I

1-SCOPE

THIS DOCUMENT DESCRIBES THE CHANGES MADE TO THE FORMS MANAGEMENT SYSTEM
AT SOFTWARE REVISION 16.2. IT SUPPLEMENTS REVISION 4 OF PE-T-296 AND
REVISION 1 OF PE-T-40Q,

2_FAP_UPDATES

THE TCB COMMAND HAS BEEN UPDATED TO ALLOW THE "CURRENT USER NUMBER" TO"
BE IDENTIFIED BY AN ASTERISK ("*") IN LIEU OF THE ACTUAL VALUE. FOR
EXAMPLE, ^ _ ^ _

* TCP * 0 W L 1 2 0 0
* TCP *

CHANGES THE USER'S TERMINAL TO OWL1200
DROPS THE TCB ENTRY FOR THE CURRENT USER

ADDITIONALLY, A NUMERIC ARGUMENT (OR •'*") MAY FOLLOW THE TCB LIST
COMMAND TO REQUEST THE TERMINAL TYPE FOR THE SPECIFIED USER NUMBER
ONLY. F.G.,

* TCB LIST 20
VI STAR 3
* TCB LIST *
UNDEFINED.

3 REMOTE LOGIN SUPPORT

FORMS WILL NOW FUNCTION PROPERLY ACROSS A REMOTE LOGIN USING X.25. AS
IT IS IMPOSSIBLE TO IDENTIFY THE TERMINAL (THRU THE USER NUMBER) ON
REMOTE LOGIN, USING A PUBLIC DATA NETWORK, OR USING DIAL-UP LINES, A
NEW PSEUDO-TERMINAL TYPE, "INQUIRE", HAS BEEN DEFINED. WHEN A USER
NUMBER IS ASSOCIATED WITH THIS PSEUDO-TERMINAL TYPE (THRU FAP'S TCB
COMMAND), THE OPERATOR .IS QUERIED AT PROGRAM EXECUTION TIME FOR THE
ACTUAL TYPE OF THE TERMINAL

PAGE

FORMS, PEV. 16.2

£_lZ£-IUf£IR_REDEFINIIION

THE PROBLEM WHICH PROHIBITED THE REDEFINITION 0F THE FORMS I/O BUFFER
(COMMON BLOCIC I08CM$> HAS BEEN CORRECTED- USERS ARE REMINDED THAT IT
IS IMPOSSIBLE TO REDEFINE THE LENGTH OF THE I/O BUFFER IN THE 64V MODE
SHARED VERSION OF THE LIBRARY; THE LIBRARY MUST BE REBUILT AFTER
UPDATING THE VALUE OF IOLSIZ DEFINED IN FORMS>RUN>IOLDEF -

THE USER SHOULD IGNORE THE
REDEFINING IOBCM$.

WARNING MESSAGE PRODUCED BY LOAD AFTER

PAGE

DATE: 24 AUG 1978

TO: PROGRAMMING AND ENGINEERING STAFF

FROM: LARRY STABILE .

SUBJECT: BASIC/VM FOR REV 16 (AND REV 15.5)

PREFACE

REV 16 BASIC/VM IS ENHANCED OVER PREVIOUS VERSIONS BY THE FOLLOWING:

1. MIDAS FILES MAY NOW BE ACCESSED BY A NEW SET OF BASIC
STATEMENTS.

2. ARRAY DATA SPACE HAS BEEN INCREASED TO BE LIMITED ONLY BY THE
MACHINE CONFIGURATION (MULTI-SEGMENT ARRAYS).

5. SEVERAL RELATIVELY SMALL FUNCTIONAL CHANGES AND THE ADDITION OF
A FEW MISCELLANEOUS STATEMENTS.

4. NUMEROUS SMALL BUGS HAVE BEEN REPAIRED, AND THE FOLLOWING TARS
HAVE BEEN PROCESSED:

25257 25254 25258 25252 25253 25261 24732 25256 25260
. . . - - - - ; . ; E ; 2 0 2 0 8 2 4 7 3 1 2 4 7 3 0 ~ ~ ; „ . ' ' • . ; , ; : : . ' ;

THE FOLLOWING TARS HAVE BEEN RECEIVED BUT HO RESPONSE HAS YET: BEEN
GENERATED:

20206 24764 25255

THESE TARS ARE BRIEFLY DESCRIBED IN THE LAST SECTION OF THIS
PAPER.

PAGE

LARGE DATA SPACE

ARRAY DATA MAY NOW SPAN
CONFIGURATION-DEPENDENT MANNER, A

MULTIPLE SEGMENTS. IN A
SYSTEM ANALYST MAY ALLOCATE AS MANY

SEGMENTS TO ARRAY DATA AS THE PARTICULAR SYSTEM ALLOWS. IN ADDITION, A
FULL SEGMENT IS AVAILABLE FOR GENERATED CODE, AS WELL A FULL SEGMENT IS
AVAILABLE FOR STRING DATA. THE LARGEST SIZE OF A SINGLE ARRAY
DIMENSION (SUBSCRIPT) STILL MAY NOT EXCEED 32767.

ON THE MASTER DISK, TWO COMMAND FILES ARE SUPPLIED TO BUILD A BASIC/VM
SYSTEM. C_BASI IS THE STANDARD ONE-SEGMENT VERSION, THIS IS THE
VERSION SENT PRE-BUILT WITH THE MASTER DISK. C.BASI.NSEG WILL BUILD A
BASIC/VM SYSTEM WITH MULTIPLE DATA SEGMENTS AND A FULL CODE SEGMENT.
THE SEG-SEQUENCF FOR C_BASI AND C_BASI.NSEG IS SHOWN BELOW:

C BASI

SEG
LOAD
tfBASIC.SHARE
SY LIST$$ 4000 1
SY EDWI$$ 4000 1
SY ESNBAS 0 165777
SY EMAXUN 0 76 /* MAX FILE UNIT NUMBER = 62CDECIMAL)
SY
SY
SY

CDESFG
BOTSEG
TOPSEG

4 001
4 001
4 001

0
0
0

SY FSFLEX 4000 2000
SPLIT 5000 4000 176000
F/S/LO BASICV>BINARY>B_F$FLEX.BV 2QQ0 4000 4000
CO ABS 4000
A/SY LNKTBL 4000 40
S/LO BASICV>BINARY>B BASBIN 0 2013 4000
D/LI VKDALB
D/LI VAPPLB
D/PL
S/IL 0 4000 4000
S/LO BASICV>BINARY>B TOPDAT 0 4000 4000

C BASI.MSEG

PAGE

SEG
LOAD
#BA SIC.SHARE
SY LISTS$ 4001 i
SY TOPDAT 4001 0
SY EDWISS 4000 1
SY ESNBAS 0 177777
SY
SY
SY

EMAXUN
CDESEG
BOTSEG

0 76
4002
4003

/*
0
0

MAX FILE UNIT NUMBER = 62C.DECIMAL)

SY TOPSEG 4037 0
SY FSFLEX 4000 2000
SPLIT 5000 4000 176000
F/S/LO BASICV>BINARY>B
CO ABS 4000
A/SY LNKTBL 4001 40

FSFLEX-BV 2000 4000 4000

S/LO BASICV>BINARY>B.
D/LI VKDALB
D/LI VAPPLB

BASBIN 0 2013 4000

D/PL
S/IL 0 4 000 4000

THE SYMBOL SETTING FOR TOPSEG IS MOST RELEVANT TO TAILORING A SPECIFIC
SYSTEM. IT SHOULD BE SY'ED IN THE MANNER SHOWN TO PLACE AN UPPER LIMIT
ON THE ARRAY-DATA SEGMENT NUMBER USED. THE TOTAL NUMBER OF SEGMENTS
ALLOCATED FOR ARRAY DATA IS THUS DETERMINED BY THIS SYMBOL AND BOTSEG,
WHICH SHOULD NOT HAVE TO BE CHANGED. NOTE THAT BASRUN, THE RUN-TIME
PACKAGE,, MUST BE ASSEMBLED WITH A 2/1 OPTION FOR THE MULTI-SEGMENT
SYSTEM. THIS FACT IS INCLUDED IN THE C_BASI.NSEG FILE. ALSO, NOTICE
THAT THE TOP SEGMENT ALLOWABLE TO THE DATA SPACE (MAXIMUM SETTING OF
TOPSEG) IS LIMITED BY THE PARTICULAR MACHINE/PRIMOS CONFIGURATION ON
WHICH B
BE THE

ASIC/VM
RESULT.

IS RUNNING. BEWARE OF THIS LIMIT.OR *ILLEGAL SEGNO' MAY

PAGE

MIDAS-ACCESS STATEMENTS

OVERVIEW

BASIC/VM NOW PROVIDES STATEMENTS TO ACCESS MIDAS FILES ON AN
ASCII-DATA BASIS. AS SUCH, STRINGS ARE THE FUNDAMENTAL DATA TYPE
PASSED BETWEEN A PROGRAM AMD A MIDAS FILE. THEY MAY BE USED AS KEYS OR
IN DATA RECORDS,
MIDAS STATEMENTS

AND THE TREATMENT OF THEM IS UNIFORM THROUGHOUT THE

THIS SECTION DESCRIBES THE CAPABILITIES OF THE MIDAS STATEMENTS,
EXPLAINS THEIR USE, AND PROVIDES EXAMPLES OF THEIR USE IN A TYPICAL
SMALL APPLICATION.

A MIDAS FILE MAY BE CONSIDERED FROM TWO FUNDAMENTAL ASPECTS.
FIRST IS THE SEPARATION OF READING AND WRITING STATEMENTS. READING
STATEMENTS ARE READ CKEYT, POSITION,
ARE UPDATE, ADD, AND REMOVE.

AND REWIND. WRITING STATEMENTS

UPDATE IS THE ONLY WRITING OPERATION THAT PERFORMS ITS FUNCTION ON
THE CURRENT RECORD. ADD AND REMOVE ARE COMPLETELY INDEPENDENT OF THE
CURRENT RECORD POINTFR, AND SO THIS POINTER CAN IN GENERAL BE
CONSIDERED A READ POINTER

THE SECOND IMPORTANT ASPECT OF MIDAS IS THE ABILITY TO MODEL THE
FILE AS A RECTANGULAR MATRIX OF CINDEX-NUMBER,KEY-POSITION3 (SEE
FIGURE) WITH A DATA-RECORD POINTER FROM EACH ELEMENT OF THIS MATRIX.
READING THE FILE CONSISTS LARGELY OF MOVING THE POINTER AROUND THIS
P-DIMENSIONAL ARRAY. AT EACH POINT, EITHER THE KEY OR THE DATA RECORD
POINTED-TO BY THE KEY MAY BE READ. REWIND PLACES THE POINTER AT THE
TOP ROW OF THE MATRIX, AT A COLUMN SPECIFIED BY THE KEY (INDEX) NUMBER.
INITIALLY, THIS POINTER IS SET TO THE FIRST PRIMARY KEY, IE., TO THE
UPPER LEFT CORNER OF THE MATRIX. THIS IS EQUIVALENT TO EXECUTING
•REWIND #N, KEY 0' .

THE CURRENT SFT OF MIDAS STATEMENTS ATTEMPTS
CONSISTENT AND COMPLETE SET OF MOVEMENTS AROUND A MIDAS

TO PERFORM A
FILE STRUCTURE.

IT IS DESIGNED SO THAT ANY STATEMENTS MAY BE MIXED WITHOUT INCONSISTENT
OR UNPREDICTABLE RESULTS. IN PARTICULAR, AN ADD PERFORMED DURING A
POSITION-SEQ OR -SAMEKEY SEQUENCE lOR OTHER READ OPERATION) WILL NOT
CAUSE THE READ LOCATION
READS WITH WRITES.

TO BE LOST; THERE IS NO STRANGE INTERACTION OF

PAGE

PAGE

STATEMENT FORMATS

DEFINITIONS

LV.,j ~ INDICATES ANY ONE OF THE VERTICALLY STACKED ELEMENTS.

\...\ - INDICATES ANY PERMUTATION OF THE ELEMENTS.

C...3 -.'- INDICATES OPTIONAL!TY.

* - INDICATES REPETITION, Q OR MORE TIMES

+ - INDICATES REPITITION, 1 OR MORE TIFiES.

LOWERCASE .- INDICATES A SYNTACTIC TYPE

PAGE

******* ** ** ** **
* DEFINE FILE *

DEFINE FILE #NUIVI_EXPR_1= STR_EXPR, MIDAS C, MUM_EXPR_2 3

OPENS A MIDAS FILE ON GIVEN UNIT. IF NUM_EXPR_2, THE RECORD SIZE, IS
6IVEN, THE INTERNAL BUFFERS ARE DIMENSIONED TO THIS VALUE. DEFAULT IS
120 CHARACTERS. MOST EFFICIENT PROCESSING OF A MIDAS FILE WILL BE
OBTAINED BY SPECIFYING A RECORDSIZE EQUAL TO THE LENGTH OF THE DATA
RECORD, AS DEFINED IN- THE'MIDAS FILE BY THE CREATE PROCEDURE. NOTE
THAT THE RECORDSIZE GIVEN MUST BE IN WORDS.

* * * * * * * * * * * *
* POSITION *
* * * * * * * * * * * *

S_EQ
POSITION 0NUM.E-X.PR_1, L" KEY CNUM_EXPR_2T = STR.EXPR 3

" " SAME KEY

POSITIONS TO A RECORD IN A MIDAS FILE. POSITION IS SIMILAR TO; READ,
EXCEPT THAT NO DATA IS RETRIEVED.

http://0NUM.E-X.PR_1

PAGE

~* READ *
* READ KEY *
******* *****

SEQ
READ CKEY3 #NUM_FXPR_1 C, C KEY CNUMEXPR 2] =

SANE
STR_EXPR 3 3, STR VAR
KEY

READS DATA FROM A MIDAS FILE.

NUM_EXPR_1 - FILE UNIT.

STR VAR - STRING VARIABLE INTO WHICH DATA IS PLACED. IF READ KEY IS
SPECIFIED, THE KEY VALUE ITSELF IS READ INTO STR_VAR. THIS IS USEFUL
FOR OBSERVING THE ACTUAL KEY AFTER A SEQUENTIAL OR PARTIAL-KEY SEARCH.

NUM_EXPR_2 - NUMBER OF INDEX SUBFILE. IF OMITTED, PRIMARY KEY IS USED.

STR.EXPR - THE KEY BY WHICH TO ACCESS (A STRING). THE KEY SIZE IS
DETERMINED RY THE STRING LENGTH. USE THIS FACT FOR PARTIAL-KEY ACCESS.

IF SEQ
(IN KE

IS
Y

SUPPL
ORDER

IED IN
) IS

STEAD
READ.

OF A KEY,
NOTE THAT

THEN TH
IT MAY

E NEXT
HAVE T

SEQUEN
HE SAME

TIAL
KEY V

RECORD
ALUE AS

THAT OF
WILL R
OTHERWI

THE REC
FTURN A
SE AN ER

ORD MO
DATU

ROR TR

ST REC
M ONL
AP IS

FNTLY READ
Y IF THE
TAKEN. T

(KEY
NEXT K

0 AVOI

•DUPLI
EY MATC
D LOOP

CATES').
HES THE

PROBLE

SA
CURRE
MS,

ME KEY
NT ONE,
AND TO

SUPPORT
WILL RE
OTHERWI

AN UN
AD DATA
SE, A RE

AMBI6U
FROM
AD STA

OUS L
THE C
TEMENT

OCKOUT MEC
URRENT RE
WILL PRE-

HANISM,
CORD,
POSITIO

AN OPT
AND DO
N (AND

IONLESS
NO RE

LOCK) TO

FORM
POSIT
THE

OF READ
IONING.
DESIRED

POINT
READ TH
BE LOC

(AS GIV
E DATA.
KED AS

EN BY
THIS
SOON

THE KE
IS IN
AS I

Y, SAME-KE
ACCORDANCE
T IS POS

Y, OR S
WITH T

ITIONED

EQUENTI
HE RULE

TO,

AL OPTIO
THAT A

AND UNL

NS) A
RECOR
OCKED

ND THEN
D WILL
BY ANY

SUBSEQU
UNLOCK

ENT I/O
STATEMEN

OPERAT
TS ARE

ION TO
PRESE

THE MIDAS
NT IN BASI

FILE. THEREFORE, NO LOCK OR
C.

PAGE

* ADD *

PRIMKEY
ADD #NUM_EXPR_1, STRI NG_ EXPR_1 , [KEY 0_EXP3 = STRING_EXPR_2 KEYLIST

KEY

KEYLIST — > C ,KEY NUMERIC_EXPR_? = STRING_EXPR_3 1

ADDS A RECORD TO THE MIDAS DATA BASE.
SYNONYM FOR WHICH IS KEY. ADD DOES NOT
LOCATION.

PRIMKEY MUST BE SUPPLIED, A
CHANGE THE CURRENT RECORD

* UPDATE *

UPDATE #NUM_EXPR, X$

WRITES X$ TO CURRENT RECORD ON FILF UNIT NUM_EXPR. IF THE USER IS
STORING KEYS IN THE RECORD, THEN HE MUST BE CAUTIONED AGAINST CHANGING
THE KEYS WITH THIS STATEMENT, SINCE, UNLIKE COBOL, BASIC WILL NOT KEEP
TRACK OF THE RECORD BREAKDOWN AND HENCE WILL NOT KNOW WHETHER A KEY
FIELD HAS BEEN CHANGED. THIS ALSO IMPLIES THAT BASIC CANNOT PERFORM
THE UPDATE FUNCTION USING REMOVE FOLLOWED BY ADD.

******* ***
* REMOVE *

REMOVE #NUM_EXPR_1 C, KEY ENUM_EXPR_23 = STR_EXPR 3 +

REMOVES (DELETES) THE GIVEN KEY FROM THE DATA BASE. IF THE KEY IS THE
PRIMARY KEY (NUM EXPR 2 EQUAL TO 0) , THEN THE DATA AS WELL AS THE
PRIMARY KEY IS REMOVED." TYPICALLY, ONE REMOVES AN ENTIRE LIST OF KEYS,
AND THE DATA, IN A SINGLE
SPECIFIC-KEY DELETION, HOWEVER

STATEMENT. THE LANGUAGE DOES PERMIT

PAGE 10

* REWIND *

REWIND #NU?1_EXPR_1 C, KEY NUM_FXPR_2 1

REWINDS THE INDEX SUBFILE NUM_EXPR_2 ON UNIT
STATEMENT CAN BE THOUGHT OF AS POSITIONING THE

NUK_EXPR_1. THIS
2-DIPSEN 5I0NAL FILE

POINTER TO THE TOP OF A SPECIFIED COLUMN. NOTE THAT IF THE KEY
SPECIFICATION IS OMITTED, KEY 0 IS ASSUMED. THIS ACTION IS EQIVALENT
TO POSITIONING THE POINTER IN THE UPPER LEFT CORNER OF THE
INDEX-SUBFILE MATRIX

* CLOSE *

CLOSE #NUFi EXPR

CLOSES THE MIDAS FILE ON UNIT NUM EXPR

PAGE 11

*** **************
* ERROR HANDLER'*

ALL MIDAS ERRORS TRAP THROUGH THE NORMAL ON ERROR GOTO MECHANISM.

THE NEW ERROR CODES AND MESSAGES CERR AND ERRS) FOR MIDAS ART
DEFINED AS FOLLOWS:

56 RECORD NOT FOUND
57
58
59

RECORD LOCKED
RECORD NOT LOCKED
KEY ALREADY EXISTS

60
61
62

SEGMENT FILE IN USE
INCONSISTENT RECORD LENGTH
RECORD FILE FULL

63
64
65

KEY FILE FULL
IMPROPER FILE TYPE
PRIMARY KEY NOT SUPPLIED

66
71
67

ILLEGAL OPERATION ON UNIT
CONCURRENCY ERROR
FATAL MIDAS ERROR

THE CATCH-ALL
FILE. THESE MAY II

ERROR 67 INDICATES A PROBLEM WITH MIDAS
i FACT NOT BE COMPLETELY FATAL ERRORS,

OR THE MIDAS
OR MAY BE

CORRECTABLE BY THE USER WITH THE PROPER ANALYSIS. THEREFORE, A NEW
SPECIAL FUNCTION, MIDASERR, HAS BEEN DEFINED, WHOSE FUNCTION IS SIMILAR
TO ERR, EXECEPT THAT THE TRUE MIDAS PACKAGE ERROR CODE WILL BE
CONTAINED THEREIN.
INTERPRETATION, AND

USERS CAN
HOPEFULLY FIX

THEN REFER
THE PROBLEM

TO THE KIDAS MANUAL FOR
OR REPORT IT TO PRIME.

PAGE 12

FOLLOWING IS AN EXAMPLE OF BASICV MIDAS STATEMENTS IK USE.

** A VERY SIMPLE 'MIDAS QUERY LANGUAGE' **

MIDAS DEMONSTRATION PROGRAM

THIS PROGRAM DEMONSTRATES THE USE OF MIDAS IN A SIMPLE
APPLICATION. CENTRAL IDEAS TO NOTE ARE THE USE OF MULTIPLE
KEYS, STORAGE OF KEY FIELDS AS DATA, AND THE USE OF BASICV'S
STRING FUNCTIONS TO AUTOMATICALLY CONTROL STRING LENGTHS,
TO PERFORM SPACE-PADDING, AND FACILITATE STRING COMPARISONS.

THE FUNCTIONS AVAILABLE VIA THIS PROGRAM ARE
FIND CALL} FIELD-NAME FIELD-VALUE
FINDS ONE OR ALL OF THE RECORDS WITH A THE GIVEN VALUE
IN THE FIELD SPECIFIED BY FIELD-NAME. FIELD NAMES
ARE REQUESTED FROM THE USER AT THE START OF THE PROGRAM,

ADD
ALLOWS THE USER TO ADD A RECORD TO THE DATA BASEv
THE USER IS PROMPTED WITH THE FIELD NAMES BEFORE
BEING REQUIRED TO TYPE IN THE RECORD.

LIST
LISTS OUT ALL RECORDS IN THE FILE.

ON ERROR GOTO 680 ! FIRST SET A SINGLE ERROR HANDLER
DIM I$(10) ! THE INPUT ARRAY
i

! FIRST DEFINE ALL NEEDED FUNCTIONS
! SviV' ..:;;;3V. • J..-:-.':: 311?" ;•'/ ..'
DEF FNP$(X$,N) ? PADS X$ WITH SPACES QN RIGHT SUCH THAT TOTAL LENGTH IS N
Y$ = X$
Y$=YS>+' * UNTIL LEN(Y$)=N
FNP$=Y$ _ _ ^ _

FN END
i :•: —• .'• '".

PAGE 13

DEF FNK(FS) ? RETURNS A KEY (INDEX SUBFILE) NUMBER GIVEN A FIELD NAME
FOR I = 1 TO 10

FNK = 1-1
IF K$(I)=F$ THEN GOTO 220

NEXT I
FNEND
i

~j
DEF FNI ! INPUT FUNCTION - GETS SPACE-SEPARATED STRINGS FROM TTY AND

? STORES THE SEQUENCE IN I $(1) . ..1$(N)
INPUTLINE '.*,)($! PROMPT WITH A '„•
X$=X$+' '
WAT I$=NULL
FOR I = 1 STEP 1 UNTIL CVT$ J- (X$,2)= ' • ! CVT$$ INSURES NO BLANKS

I$(I) = LEFT(X$,INDEX(XS, ' «)-1)
XS = RIGHT(X$,INDEX(X$, ' ')+1)

NEXT I
FNEND
i

"1
DEFINE FILE #1 = •DIR•,MI DAS,64
MATINPUT 'FIELDS: MCt(*) ! FIELD NAMES, IN ORDER FROM KEY D
i

i ** WAIN LOOP **
i

D=FNI ! INPUT COMMAND STRING

! FIND ALL

IF IS(1)=,FIND« AND I$(2)='ALL» THEN DO
POSITION M, KEY FNK (I? (3)) =1 $(4)
READ #1 , X$
PRINT CVT$$(X$,16) ! COMPRESS STRINGS OF BLANKS TO ONE BLANK
POSITION #1, SAME KEY ! WANT TO FIND ALL RECORDS WITH THIS KEY VALUE
GOTO 370
DOEND

FIND

IF I$(1) = « FIND1 THEN DO
READ m, KEY FNK (IS (2)) =1$ (3) ,
PRINT CVT$$(X$,16)
GOTO 340

X$

DOEND

ADD

IF I$(1)=*ADD'
PRINT K$(I):

THEN DO
FOR I = 1 TO 4

PRINT '
D = FNI
I$(1)=FNP$(I$(1),3?) ! WRITE DATA MUST BE PADDED TO CORRECT LENGTH
I$(2)=FNP$(I$(2),32)
I$(3)=FNP$CI$(3)#32)

PAGE 14

540 I$(4)-FNP$(I$(4)^32)
Z$=I$(1)+I$(2)+I$(3)+I$C4)
ADD #1,Z$,KEY0=I$(1),KEY1=IS(2),KEY2=I$(3),KEY3=I$(4)
GOTO 340
DOEND

LIST

F I$(1)=,LI5T' THEN DO
REWIND #1 | DEFAULT IS KEY 0
READ #1, X$
PRINT CVT$$(X$,16)
POSITION #1 , SEQ

640
650
651 !

GOTO 610
DOEND

652 !
660 P
670 G

RINT »?'•
OTO 340

COWHAND ERROR

671
680!
681

A SINGLE ERROR HANDLER !!!!

690 IF E.RR=56. AND ERL=39Q THEN GOTO 340
695 IF ERR-56 AND "ER'.L=630 THEN GOTO 340
700 PRINT ERR$CERR):'AT LINE':ERL ! FALL
720 END

THROUGH TO SYSTEM ERROR

PAGE 15

BELOW IS A JSAMPLE DIALOGUE USING THE DEMO PROGRAM, WITH
A SIMPLE DATA BASE OF SEQUENCE NUMBERS, NAMES, CITIES, AND STATES

OK, * FIRST MAKE AN EMPTY MIDAS FILE
OK, CO CCREATK "•-:; _
OK, CREATK
GO
MINIMUM OPTIONS? YES

FILE NAME? DIR
NEW FILE? YES
DIRECT ACCESS? NO

DATA SUBFILE QUESTIONS

KEY TYPE: A
KEY SIZE = : W 16
DATA SIZE = : 64

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS P E R M I T T E D ? YES
KEY T Y P E : A
KEY S I Z E = : W 16
USER DATA S I Z E = :

INDEX N O . ? 2

DUPLICATE KEYS P E R M I T T E D ? YES
KEY T Y P E : A
KEY S I Z E = : W 16
USER DATA S I Z E = :

INDEX N O . ? 3

DUPLICATE KEYS PERMITTED? YES
KEY TYPE: A
KEY SIZE = : W 16
USER DATA SIZE =

INDEX NO.?

OjC, CO TTY;
OK, * NOW. RUN THE DEMO
BASICV •
GO

s S f i : . U ' i ' i v : : \ ^ ; y . . - • ^ ' y t K i l . ; : : : / • ' • " « ' - % ? F " - • ' . - ' : ' & • - - ' - ; • K F • ; . : ' : . : \ ' ' : ' - : : H ' : - ; ' : 4 : " ^ 3 | ~ ^ v " ' "

. . ,;:: . .'• •
, • ••.•• • •:• V: ;#"•'•': . . :•;•.:' ••.. ' . '•-'•?, V:' ;'"-••' '-• :• '•""•:•' '• • • ••> ..'";

'•- ' • :C .:':' ' .' ':'• "i'"-r•• v .-. • ' — •:••

' • - . - ' r S - . i . ' • ' : y . ' - H i J - • ' ' • ' • ' • ' " ' " ' " \ ' - : l 4 . ; H v r - • ' • • • . . . i t J ^ ' ^ i - T • L : : ; r S l |

. .-•'4;S?-p ••', - S :-"-;.. S ' - . • . : S ; i • 111

s ' •
• ;;:;' . • «•
"••;••' • ••:••..;

" . :•' ' ." " "-''•

PAGE 16

BASICV REV16.G
NEW OR
>RUN
DEMO

OLD: OLD DEMO

FRI, SEP 01 1978 17:46:24

FIELDS:NUM,NAME,CITYASTATE
.ADD
NUM NAME
.ADD
NUM NAME

CITY STATE .1 JONES BOSTON MASS

CITY STATE .2 JAMES NEWTON MASS
.ADD
NUM NAME
.ADD

CITY STATE .3 SMITH NYC NY

NUM NAME CITY STATE .4 AMES ORANGE NJ
.LIST
T JONES BOSTON MASS -
2 JAMES N
3 SMITH N
4 AMES OR

EWTON MASS
YC NY
ANGE NJ

'.FIND NAM
2 JAMES N
.FIND ALL

E JAMES
EWTON MASS
STATE MASS

1 JONES B
2 JAMES N
.FIND ALL

OSTON MASS
EWTON MASS
NAME J (PARTIAL KEY ACCESS - FINDS ALL NAMES STARTING WITH 'J')

2 JAMES N
1 JONES B
.FIND ALL

EWTON MASS
OSTON MASS
STATE N

4 AMES OR
3 SMITH N
.CONTROLC

ANGE NJ
YC NY

END OF
>QUIT

DATA AT LINE 240

PAGE 17

BASIC/VM ADDENDA

FOLLOWING IS A LIST OF MISCELLANEOUS CHANGES MADE TO BASIC/VM
BETWEEN REV 15.0 AND REV 16.0 .

COMINP CAN NOW BE USED AS A STATEMENT. AS SUCH, IT ACTS LIKE A
STOP FOLLOWED BY A COMINP COMMAND. NOTE THAT THE ARGUMENT TO THE
C O M N P STATEMENT MUST RE A LEGAL BASIC STRING (AN EXPRESSION,
VARIABLE, OR QUOTED CONSTANT) WHEREAS THE COMINP COMMAND TAKES AN
UNQUOTED STRING ARGUMENT.

2. THE REPLACE STATEMENT:

REPLACE #U SEG M BY SEG N

flU IS A FILE UNIT ON WHICH A SEGMENT DIRECTORY IS OPEN. THE FILE
POINTED AT BY SEGMENT M IS DELETED, AND THE POINTER AT SEGMENT N
IS MOVED TO SEGMENT M. THE OLD POINTER AT SEGMENT N IS THEN
ZEROED.

STRING CONSTANTS CAN NOW BE A MAXIMUM OF 160 CHARACTERS LONG.

A NEW MAT STATEMENT HAS BEEN ADDED. SIMILAR IN ACTION TO CON OR
ZER, IT IS CALLED MAT X S = NULLC (N1C,N23)3 , AND SERVES TO NULL
OUT AND OPTIONALLY REDIMENSION A STRING ARRAY.

5. TERMINAL CAN NOW BE ASSIGNED AS AN ARBITRARY FILE UNIT USING THE
»(ASR)' FILE NAME, AS IN THE OLD BASIC INTERPRETER.

~6l MATINPUT AND INPUTLINE CAN NOW TAKE PROMPT STRINGS, IN THE SAME
MANNER AS INPUT.

ALTER IS NOW A MODE FROM WHICH ONE ESCAPES TO BASICV BY TYPING
~rQT~. TFTS WAS DONE BECAUSE VERY OFTEN ONE NEEDS MORE THAN ONE
PASS OVER A LINE TO MAKE THE DESIRED CHANGES FELICITOUSLY.

PAGE 18

8. THE NUMBER OF AVAILABLE FILE UNITS IS NOW 12 RATHER THAN 8. IN
ADDITION, ALL FILE UNITS ARE ALLOCATED FROM THE TOP DOWN (STARTING
WITH UNIT 62). ANDBASIC/VM CLOSES (UPON EXIT* ONLY THE UNITS THAT
IT USES. THIS WILL ALLEVIATE COMMAND-FILE PROBLEMS OF PREVIOUS
VERSIONS

9. LIN(O) NOW OUTPUTS A SINGLE CARRIAGE-RETURN, AS OPPOSED TO SIMPLY
DOING NOTHING.

TO. THE FOLLOWING TWO SYNTACTICAL FORMS ARE NOW LEGAL

WRITE tf-N USING X$,. ..

WRITE USING X$, #N,...

11 .

BOTH OF THESE ARE SUPPORTED FOR COMPATIBILITY REASONS.

PAUSE STATEMENT HAS BEEN ADDED; IT ACTS AS AN EXECUTABLE BREAK.
EXAMPLE:

>OL4) PROG
r >LIST

PROG

10 PRINT
2 0 PAUSE
30 PRINT
AH END
>RUN
PROG

THU, JUN 01 1978 10:35:25

1

3 ;}??:—"" • •'

THU, JUN 01 1978 10:35:27
' ••••:':-.'.' : 1

1 § • • -:; "---; '
PAUSE AT
>CONTINUE
3

LINE 20

>

12- SOME CAUTIONS IN USING USER-DEFINED FUNCTIONS:

PA6F 19

- GOTO'S OR OTHER SIMILAR TRANSFERS OF COMTROL MUST NOT BE
MADE FROM INSIDE A FUNCTION DEFINITION OUT NOR
IN. IF THIS IS DONE, THE SYSTEM STACK WILL
TRACK, AND RESULTS WILL BE UNPREDICTABLE.

FROM OUTSIDE
INCORRECTLY

- A CALL TO A USER-FUNCTION THAT PERFORMS I/O MUST NOT BE
PLACED AS PART OF AN I/O LIST. UNPREDICTABLE BEHAVIOR WILL
RESULT ON THE FILES OR I/O
STATEMENTS. THIS DOES NOT MEAN
USED TO PERFORM I/O, INDEED,

DEVICES ADDRESSED BY THESE
THAT FUNCTIONS SHOULD NOT BE
THERE ARE ADVANTAGES TO THIS.

ONE SHOULD
TEMPORARY
STATEMENT.

SIMPLY FOLLOW THE RULE STATED ABOVE, AND USE A
VALUE WHERE ONE MIGHT HAVE USED, SAY, A PRINT

EXAMPLE :

10
20

GOODPROG

100
105
110

DEF FNR$(N) READS A STRING FROM FILE UNIT N,
RETURNS NULL IF EOF

ON END #N GOTO 150
120
130
140

READ LINE
FNR$=X$
GOTO 160

#N, X$

150
160
170

FNR$=» »
NEND

180 !
190 !
195 !

READ FILE
ON EOF,

•XXX', PRINT ON TEi
CLOSE FILE AND END

INAL

200 N = 1
210 DEFINE FILE #N = *XXX»
220 FOR I = 1 UNTIL 1=2
T3D
240
250

D$=FNR$(N)
IF D$ = » ' THEN

CLOSE HH
DO

260
270
280

DOEND
PRINT

END

D?
290 NEXT I

10
2 0

! BADPROG

105
110

DEF FNR$(N) ! READS A STRING FROM FILE UNIT N,
! RETURNS NULL IF EOF

ON END #N GOTO 150
120 READ LINE
130 FNR$=X$
140 GOTO 160

//N, X$

150
160

FNR$=» *
FNEND

PAGE 20

170 !
180 !
190 !
195 !

READ FILE rXXX», PRINT ON TERMINAL
EOF ACTION ACTION NOT DEFINED

200 N = 1
210 DEFINE
220 FOR I •

FILE #N = *XXX'
1 UNTIL 1=2

230 PRINT
290 NEXT I

FNRS(N)

LINE 230 OF GOODPROG SHOWS THAT
T H E I/0 HANDLER, LINE 230

D$=FNR$CN> WILL NOT CONFUSE
OF BADPRQG, HOWEVER/ SHOWS A

POSSIBLE WAY OF WAKING THE I/O AMBIGUOUS. IN THIS CASE, THE
SYSTEM SETS UP TO PRINT THE VALUE OF THE FUNCTION, THEN CALLS
THE FUNCTION TO GET THIS VALUE. DURING THE CALL, THOUGH, I/O
IS PERFORMED, THEREBY DESTROYING THE PREVIOUS SETUP FOR
PRINT. SUBSEQUENT RESULTS WILL THEN BE UNPREDICTABLE,

PAGE 21

TARS

FOLLOWING IS A LIST OF TARS, PROCESSED AND UNPROCESSED,
APPLICABLE TO BASIC/VM-

25257 - RASICV NON-EXISTENT-FILE CAUSES ACCESS VIOLATION.
FIXED

25254 - WRITING >120 CHARS TO A FILE TRUNCATES LINE.
SOLUIIONi INCREASE RECORD SIZE TO HANDLE LINES OF DESIRED
LENGTH.

25258 - GOSUB STACK NOT RESET FROM PROGRAM TO PROGRAM. FIXED

25252 & 25253 - ENTER - SHORT FORM WAS ILLEGAL, ALSO SYNTAX
NOT CHECKED FOR CONSTANTS IN VARIABLE SLOTS. FIXED

25261 - SQR OF FRACTIONAL POWERS OF TWO PRODUCED INCORRECT
RESULTS. FIXED

24732 - TRACE ON CLOBBERS LINE NUMBER UPON ERROR FIXED

25256 - NUMERIC CONSTANTS OF FORK XEDO WERE NOT RECOGNIZED.
FIXED

25260 - NUMERIC OVERFLOW,UNDER FLOW - INAPPROPRIATE ERROR
MESSAGE. FIXED

20208 - BASICV FILE-NAME RETURNS TO BASICV INSTEAD OF
PRIMOS. FIXED

24731 - RANDOM CHARACTERS wTRE PRINTED IN EXPONENT UPON
OVERFLOW. FIXED (NOW FILLS FIELD WITH STARS, AS DOES PRINT
USING)

24730 - 0**-X = 1, X>=0. FIXED (GIVES ERROR MESSAGE)

2C206 - DATA CHAINS NOT RESET ON EXECUTE. FIXED

24764 - COMPILER-TEMPORARY FILES (TSNNNN) ARE LOST UPON
ATTACHING TO ANOTHER UFD FROM WHICH THEY WERE CREATED. IN
PROGRESS

25255 - RESEQUENCE DOES NOT REPLACE DUPLICATE LINES.
SOLUTION: DELETE LINES BEFORE RESEQUENCING

SUBJECT: RUNOFF FOR RELEASE 16.0.

TWO NEW COMMANDS ARE AVAILABLE EODD (EJECT ODD) AND .EEVEN (EJECT
EVEN), MINIMAL ABBREVIATIONS ARE .EO AND .EE. THESE COMMANDS CAUSE AN
EJECT TO A NEW PAGE. A SUBSEQUENT EJECT IS THEN CAUSED IF THE NUMBER
OF THE NEW PJGE IS EVEN (FOR .EO) OR ODD (FOR .EE), THESE COMMANDS
FUNCTION INDEPENDENTLY OF
.PAGE COMMAND OR IS BEING

WHETHER THE
DISPLAYED.

PAGE NUMBER HAS BEEN SET WITH THE

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228

